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Abstract: The magnetic, electrical transport and thermal expansion properties of Mn3Zn1−xCoxN
(x = 0.2, 0.4, 0.5, 0.7, 0.9) have been systematically investigated. Co-doping in Mn3ZnN complicates
the magnetic interactions, leading to a competition between antiferromagnetism and ferromagnetism.
Abrupt resistivity jump phenomenon and negative thermal expansion behavior, both associated with
the complex magnetic transition, are revealed in all studied cases. Furthermore, semiconductor-like
transport behavior is found in sample x = 0.7, distinct from the metallic behavior in other samples.
Below 50 K, resistivity minimum is observed in samples x = 0.4, 0.7, and 0.9, mainly caused by e-e
scattering mechanism. We finally discussed the strong correlation among unusual electrical transport,
negative thermal expansion and magnetic transition in Mn3Zn1−xCoxN, which allows us to conclude
that the observed unusual electrical transport properties are attributed to the shift of the Fermi energy
surface entailed by the abrupt lattice contraction.
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1. Introduction

As a strongly correlated electron system, antiperovskite compounds with a chemical formula
Mn3XN (X: transition metals or semiconducting elements) and with a noncollinear magnetic ground
state induced by the geometric frustration in the Mn6N octahedron have been shown to exhibit
fascinating physical properties, such as abnormal thermal expansion including negative thermal
expansion (NTE) and zero thermal expansion etc. [1–3], near-zero temperature coefficient of resistivity
(TCR) [4–6], magnetostriction [7], spin-glass (SG) behavior [8–10] and magnetocaloric effect [11,12].
It has been found that these interesting physical properties are sensitive to the number of the valence
electrons of metal X located at the corners of antiperovskite unit cell, which contributes itinerant
electrons at the Fermi level [13]. Hence, any change in carrier concentration of Mn3XN has a significant
impact on its electronic structure, and may produce great diversity of its magnetic structures and
related novel physical phenomena [14].

Among these antiperovskite compounds, Mn3ZnN with the so-called noncollinear Γ5g

antiferromagnetic (AFM) structure, has attracted considerable attention [15,16]. Previous reports
have demonstrated that Mn3ZnN undergoes an AFM transition at around 180 K, responsible for
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a resistive-switching phenomenon [17], and two cubic phases appear in a given temperature range [18].
Chemical doping and defect based on Mn3ZnN could lead to additional interesting magnetic and
electronic properties [1,19–22]. For example, the zero thermal expansion (ZTE) of Mn3[Zn-(Ag,Ge)]xN
compounds has been investigated, and is closely correlated with the magnetic structure and can be tuned
by adjusting the chemical and vacancy concentrations [1] and the crystallite size [23]. Magnetoresistance
reversal has been reported in Mn3Cu0.5Zn0.5N, which is thought of as the reconstruction of the Fermi
surface accompanied by an AFM- ferromagnetic (FM) transition [24]. Moreover, recent reports have
shown that the introduction of Co could effectively tune the physical properties in antiperovskites, such as
the near zero TCR in Mn3−xCoxCuN [25] and the AFM-FM transition in Mn3Ag1−xCoxN [26]. Since Co
bears a similar electronic structure to that of Zn, introducing magnetic Co in Mn3ZnN may provide new
insight into the understanding of the origin of these novel physical properties.

In this study, we present the magnetic, electrical transport and thermal expansion properties of
Mn3Zn1−xCoxN compounds. The doping of magnetic Co at the Zn site in Mn3ZnN can effectively
modify the magnetic interactions and trigger strong AFM and FM competition. The competing
interaction may prompt the unusual transport properties in Mn3Zn1−xCoxN.

2. Materials and Methods

2.1. Sample Preparation

Polycrystalline samples Mn3Zn1−xCoxN (x = 0.2, 0.4, 0.5, 0.7, 0.9) were synthesized by solid-state
reaction from stoichiometric mixtures of Mn2N, Zn, and Co powders. These powders were carefully
mixed and ground in a mortar, and then pressed into pellets. The pellets were wrapped in Ta foils and
sealed in vacuum (p < 10−5 Pa) into quartz tubes. The tubes were then sintered at 1073.15 K for 80 h,
and cooled down to room temperature.

2.2. Characterization

Variable-temperature XRD experiments in the temperature range 10–300 K were carried out on
a Bruker D8 ADVANCE diffractometer (Bruker Corporation, Billerica, MA, USA ) with Kα1 radiation
selected by a Ge (111) primary beam monochromator. The measurements of the temperature-dependent
magnetization from 10 K to 350 K were performed on Magnetic Property Measurement System
(MPMS) (Quantum Design, San Diego, CA, USA). Both zero-field-cooled (ZFC) and field-cooled
(FC) magnetization curves were measured from 5 K to 350 K under external magnetic field of 600 Oe.
Magnetic hysteresis loops between 0 and 5 T were recorded at 50, 100, 150, 200, and 300 K. The electrical
resistivity was measured using the standard four-probe method with a commercial (Quantum Design,
Inc.) physical property measurement system (PPMS). Differential Scanning Calorimeter (DSC200F3,
NETZSCH, Gebrüder-Netzsch-Straße, Selb, Germany) was used to measure the specific heat of the
samples in the temperature range 110–300 K.

3. Results and Discussion

3.1. Crystal Structure

The crystal structures of all samples were investigated using powder XRD at room temperature,
as shown in Figure 1a. All samples crystallize in the cubic antiperovskite structure with the space
group Pm-3m. The XRD pattern of all the Mn3Zn1−xCoxN (0 < x ≤ 1) samples were analyzed using
the Fullprof software [27]. An initial analysis of all patterns was carried out by assuming a space
group Pm-3m with N, Zn/Co, and Mn atoms at the 1a site (0, 0, 0), 1b site (1/2, 1/2, 1/2), and 3d
site (1/2, 0, 0), respectively. The good agreement between the observed and calculated patterns from
the Rietveld refinement indicates that the Pm-3m model is suitable for Mn3Zn1−xCoxN compounds.
Figure 1c,d shows the refined results for samples x = 0.2 and 0.9, respectively. A small amount of
impurity phase MnO was marked in Figure 1 and was not considered in the refinement. The lattice
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parameter as a function of the Co concentration is shown in Figure 1b. The lattice constant decreases
monotonically with increasing Co content, as the atomic radius of Co is smaller than that of Zn.
These results indicate that Co replaces Zn in Mn3ZnN as designed.
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competition between FM and AFM interactions. The irreversibility between ZFC and FC curves 
probably implies the presence of FM components related to canting phenomenon. It is worth noting 
that the magnetization decreases as the Co-doping proceeds, indicating the suppression of FM 
interactions and the enhancement of AFM interactions. In order to further study the magnetic 
properties, we performed specific heat measurement. All temperature-dependent specific heat CP 
curves (Figure 2) exhibit an obvious peak around the magnetic transition TN, in good accordance with 
the magnetization results. The small cusp in specific heat curves at ~115 K is a contribution of 
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− ΘW), where C is the Curie constant and ΘW is the Weiss temperature, was applied to fit the 
paramagnetic linear region of the magnetic susceptibility curves, as shown in Figure 2f. The fitting 
results for all samples are presented in Table 1. For samples x = 0.2 and 0.4, positive ΘW of 200 and 
115 K were obtained, respectively, indicating the dominant FM interactions. However, negative ΘW 
were obtained for x ≥ 0.5, suggesting the governing role of the AFM interactions. Such a variation of 
the sign of ΘW implies the enhancement of the AFM interactions with increasing Co concentration. 

Figure 1. (a) Powder XRD patterns of the polycrystalline Mn3Zn1−xCoxN (0 ≤ x ≤ 1) at room
temperature; (b) Lattice parameter as a function of the Co content. Inset shows the schematic
crystal structure of Mn3Zn1−xCoxN; (c,d) Rietveld analysis of the XRD patterns for Mn3Zn1−xCoxN
(x = 0.2 and 0.9) observed at room temperature. The cross marks and solid lines show the observed
and calculated patterns, respectively. The difference between them is shown at the bottom of each
panel. The positions of the Bragg reflections are marked by ticks. The symbol of asterisk indicates the
impurity phase MnO. Excluded regions are the diffraction reflections from sample holder (Cu).

3.2. Magnetic Properties

The temperature dependence of the magnetization curves M (T) of the polycrystalline
Mn3Zn1−xCoxN under ZFC and FC processes is shown in Figure 2. In sharp contrast to the host
material Mn3ZnN where an AFM transition occurs at ~183 K [15], the samples x = 0.2, 0.4, 0.5,
0.7 and 0.9 show a magnetic state featured by a canted AFM magnetic ground state, resulting
from the competition between FM and AFM interactions. The irreversibility between ZFC and FC
curves probably implies the presence of FM components related to canting phenomenon. It is worth
noting that the magnetization decreases as the Co-doping proceeds, indicating the suppression of
FM interactions and the enhancement of AFM interactions. In order to further study the magnetic
properties, we performed specific heat measurement. All temperature-dependent specific heat CP

curves (Figure 2) exhibit an obvious peak around the magnetic transition TN, in good accordance with
the magnetization results. The small cusp in specific heat curves at ~115 K is a contribution of impurity
phase MnO which undergoes a magnetic phase transition at 115 K.

To obtain information on the nature of the magnetic order, the spin-only expression:
χ(T) = C/(T − ΘW), where C is the Curie constant and ΘW is the Weiss temperature, was applied to fit
the paramagnetic linear region of the magnetic susceptibility curves, as shown in Figure 2f. The fitting
results for all samples are presented in Table 1. For samples x = 0.2 and 0.4, positive ΘW of 200 and
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115 K were obtained, respectively, indicating the dominant FM interactions. However, negative ΘW

were obtained for x ≥ 0.5, suggesting the governing role of the AFM interactions. Such a variation of
the sign of ΘW implies the enhancement of the AFM interactions with increasing Co concentration.
Moreover, the effective magnetic moment µeff of all the compounds is much lower than the theoretical
value of 4 µB/Mn [28], which is consistent with the magnetism from itinerant electrons, as expected
for these compounds. As shown in Figure 3a–e, the presence of a small fraction of ferromagnetic
components can be confirmed in the isothermal M-H curves. For x = 0.2, the magnetization does not
reach saturation, but has a remnant magnetization value of 0.32 µB/f.u. as the magnetic field increases
below TN. The remnant magnetization decreases with increasing Co content. These features imply that
the Mn3Zn1−xCoxN compounds possess a canted AFM magnetic ground state with x > 0. Regarding
the magnetic interaction pathways, previous studies have shown consistently that the triangular lattice
composed of Mn atoms is uniquely responsible for the magnetic properties. It is hence reasonable
to believe that the significant spin interactions arise from Mn-Mn atoms. However, based on our
current experimental results, we cannot rule out the possibility of the existence of exchange interactions
between Co-Co atoms, which may affect the remnant magnetization. Further verification about this
point requires advanced experimental techniques such as neutron diffraction.

Table 1. Parameters obtained by the fitting of Curie-Weiss of Mn3Zn1−xCuxN compounds.

Co (x) Weiss Temperature (K) Effective Moment µeff (µB)

0.2 200 2.00
0.4 115 2.14
0.5 −22 2.76
0.7 −220 3.41
0.9 −380 3.68

Materials 2018, 11, x FOR PEER REVIEW  4 of 10 

 

Moreover, the effective magnetic moment μeff of all the compounds is much lower than the theoretical 
value of 4 μB/Mn [28], which is consistent with the magnetism from itinerant electrons, as expected 
for these compounds. As shown in Figure 3a–e, the presence of a small fraction of ferromagnetic 
components can be confirmed in the isothermal M-H curves. For x = 0.2, the magnetization does not 
reach saturation, but has a remnant magnetization value of 0.32 μB/f.u. as the magnetic field increases 
below TN. The remnant magnetization decreases with increasing Co content. These features imply 
that the Mn3Zn1−xCoxN compounds possess a canted AFM magnetic ground state with x > 0. 
Regarding the magnetic interaction pathways, previous studies have shown consistently that the 
triangular lattice composed of Mn atoms is uniquely responsible for the magnetic properties. It is 
hence reasonable to believe that the significant spin interactions arise from Mn-Mn atoms. However, 
based on our current experimental results, we cannot rule out the possibility of the existence of 
exchange interactions between Co-Co atoms, which may affect the remnant magnetization. Further 
verification about this point requires advanced experimental techniques such as neutron diffraction. 

Table 1. Parameters obtained by the fitting of Curie-Weiss of Mn3Zn1−xCuxN compounds. 

Co (x) Weiss Temperature (K) Effective Moment μeff (μB) 
0.2 200 2.00 
0.4 115 2.14 
0.5 −22 2.76 
0.7 −220 3.41 
0.9 −380 3.68 

 
Figure 2. Temperature dependence of the magnetization and specific heat CP for Mn3Zn1−xCoxN 
compounds: (a) x = 0.2; (b) x = 0.4; (c) x = 0.5; (d) x = 0.7; (e) x = 0.9. The small cusp in specific heat 

Figure 2. Temperature dependence of the magnetization and specific heat CP for Mn3Zn1−xCoxN
compounds: (a) x = 0.2; (b) x = 0.4; (c) x = 0.5; (d) x = 0.7; (e) x = 0.9. The small cusp in specific
heat curves at 115 K represents the contribution of MnO; (f) Temperature dependence of the inverse
magnetic susceptibility for Mn3Zn1−xCoxN. The fitting lines represent the Curie-Weiss curve.
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0.9) in the temperature range of 5–350 K. No large magnetoresistance behavior was observed in any 
of the studied samples (see Figure S1 in Supplemental Materials). For x = 0.2, the resistivity first 
decreases upon cooling from 300 K, then increases abruptly at TN = 175 K, reaching a maximum, and 
finally decreases with a further decrease in temperature. The resistivity exhibits a temperature-
dependent fluctuation up to 20% (evaluated by the function (ρmax − ρmim)/ρmim), which is much higher 
than that in Mn3ZnN [17]. Sample with x = 0.4 also shows abrupt resistivity change at TN, but with a 
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Figure 3. Isothermal magnetization curves M (H) measured from 0 T to 5 T and from 5 T to 0 T at
several selected temperatures from 50 to 300 K for Mn3Zn1−xCoxN (a) x = 0.2; (b) x = 0.4; (c) x = 0.5;
(d) x = 0.7; (e) x = 0.9. The measurement process of the M (H) curves are shown in (d) by arrows.
These curves are not typical magnetic hysteresis loops; therefore, the remnant magnetization should be
positive. The idea of this characterization is to evidence the presence of ferromagnetic components in
the as-prepared samples. Some initial magnetization curves do not develop from zero, which is caused
by the history of the magnetization of the samples; (f) Variations of the transition temperature TN and
resistivity ρT as a function of Co content.

3.3. Electrical Transport Behavior and Negative Thermal Expansion

Figure 4 shows the temperature-dependent resistivity ρ (T) of Mn3Zn1−xCoxN (x = 0.2, 0.4, 0.7, 0.9)
in the temperature range of 5–350 K. No large magnetoresistance behavior was observed in any of the
studied samples (see Figure S1 in Supplemental Materials). For x = 0.2, the resistivity first decreases
upon cooling from 300 K, then increases abruptly at TN = 175 K, reaching a maximum, and finally
decreases with a further decrease in temperature. The resistivity exhibits a temperature-dependent
fluctuation up to 20% (evaluated by the function (ρmax − ρmim)/ρmim), which is much higher than that
in Mn3ZnN [17]. Sample with x = 0.4 also shows abrupt resistivity change at TN, but with a very slight
decrease after a resistivity maximum. Namely, the transport behavior at low temperature is metallic
for Mn3Zn1−xCoxN (x = 0.2 and 0.4) compounds. For x = 0.7, there is an obvious increase in resistivity
around TN = 260 K with decreasing temperature down to 175 K, as shown in Figure 4c. Then the
resistivity increases slowly but monotonically to the lowest measured temperature. In contrast to x = 0.2
and 0.4, the temperature dependence of the resistivity of Mn3Zn0.3Co0.7N shows a semiconductor-like
transport behavior which is likely a result of the change of its energy band structure [29]. This gives
rise to a metal-to-semiconductor-like change from sample x = 0.2 to x = 0.7.
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using function (1) at low temperature. The dashed line represents the jumping zone.

It has been previously shown that Mn3ZnN undergoes a resistive switching phenomenon driven
by AFM phase separation below 190 K [17]. In our work, the behavior of electrical transport in all
investigated samples (from x = 0.2 to 0.9) shows an abrupt resistivity jump around TN. Among them,
the sample with x = 0.9 exhibits an abrupt resistivity change at the much higher temperature TN = 276 K.
In all cases, the abrupt resistivity jump phenomenon is accompanied by magnetic ordering, indicating
a strong correlation between the magnetism and the electrical transport.

To explain the unusual electrical transport behavior, we investigated the thermal expansion
behavior of Mn3Zn1−xCoxN series using variable temperature XRD. XRD data collected at different
temperatures reveal that all samples crystallize into cubic cells with space group Pm-3m, and no
structural transition can be observed over the whole measured temperature range. The refinement of
the XRD data yields the temperature dependence of the lattice constant, as shown in Figure 5. It can
be seen that all samples display a negative thermal expansion behavior in their specific temperature
range. For samples x = 0.2, 0.4, 0.5, and 0.7, the temperature range could be estimated at about
125–180 K, 180–230 K and 150–240 K, 153–223 K, respectively, with respective linear coefficients of
thermal expansion −5.53 × 10−5 K−1, −3.1 × 10−5 K−1, −1.67 × 10−5 K−1 and −0.68 × 10−5 K−1.
Obviously, the introduction of Co effectively broadens the temperature range of NTE. This is
because of the negative thermal expansion associated with the magnetic phase transition through
the magneto-volume effect, as suggested in several antiperovskites [1–3]. On the basis of this lattice
change, we may discuss slightly the underlying cause for unusual electrical transport properties
in Mn3Zn1−xCoxN. The abrupt change in the lattice parameter, caused by the magnetic transition,
may lead to the shift of Fermi level. Therefore, an abrupt decrease in the DOS near the Fermi level
could be generated through the shift of the Fermi energy surface, leading to a pronounced decrease
of the effective number of conduction electrons, as explained in Ref. [29]. Therefore, the resistivity
can be enhanced significantly at the magnetic transition temperature. In addition, note that the grain
size and grain boundaries of the samples can also play a role in producing the abnormal change in
resistivity. The reason why only sample x = 0.7 shows semiconductor-like transport behavior can
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also be addressed based on negative thermal expansion. The linear coefficient of NTE of sample
x = 0.7 is smaller compared to other samples, as shown in Figure 5. Therefore, we believe that gradual
change of lattice parameter as a function of temperature is a key ingredient for the occurrence of
semiconductor-like feature.
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(b) x = 0.4; (c) x = 0.5; (d) x = 0.7. Negative thermal expansion behavior around the magnetic phase
transition was observed.

Another marked feature is the appearance of electrical resistivity minima below 50 K in the
Mn3Zn1−xCoxN (x = 0.4, 0.7, 0.9) samples, which reflects the involvement of additional scattering
factors. Generally, besides the well-known Kondo mechanism [30,31], there are other possible
models that could account for the ρ minima, such as e-e interaction and electron-phonon interactions.
In a strong electron-correlated system, the e-e interaction should play an important role in the electronic
transport. To make a quantitative analysis, taking into account these mechanisms for minimum
resistivity, the following equation was therefore taken to fit the low temperature resistivity data [30–33]

ρ = A + BT1/2 − ClnT + DT5 (1)

where the coefficients A, B, C, and D represent the contributions from the residual resistivity,
electron-electron (e-e) interactions, Kondo-like spin-dependent scattering, and electron-phonon (e-p)
interactions, respectively. The curves are fitted well with Equation (1), as shown in the inset of Figure 4.
The fitting parameters are listed in Table 2. The coefficient D related to e-p interactions is much smaller
than B and C and can be neglected, suggesting that the behavior of electrical resistivity minima is
mostly determined by the Kondo-like scattering and the e-e interactions. The coefficient B decreases
as the Co concentration increases, indicating the suppression of the e-e scattering. This suggests
that the appearance of the FM state may constrain the local spin directions and suppress the e-e
scattering [33]. Because the Kondo-like scattering plays only a minor role, the good agreement
between the experimental and fitted result suggests that the e-e interactions should be mainly
responsible for the electrical resistivity minima. Even though the phenomenological fitting provides
a reasonable explanation for the occurrence of resistivity minimum, other possibilities of generating
such phenomenon such as chemical disorder or defects cannot be ruled out.
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Table 2. Parameters used to fit the resistivity data (H = 0 kOe) of the Mn3Zn1-xCoxN (x = 0.4, 0.7 and
0.9) compound.

x A B C D

0.2 - - - -
0.4 1.69 × 10−4 6.69 × 10−8 9.06 × 10−7 9.95 × 10−16

0.7 1.02 × 10−4 5.41 × 10−8 1.96 × 10−7 1.49 × 10−15

0.9 7.14 × 10−5 2.31 × 10−8 2.43 × 10−7 1.14 × 10−15

4. Conclusions

In summary, Mn3Zn1−xCoxN (x = 0.2, 0.4, 0.5, 0.7, 0.9) were synthesized by solid-state reaction
in vacuum. The effect of Co doping on the magnetic, thermal expansion and resistivity properties
of antiperovskite Mn3Zn1−xCoxN compounds was investigated. As a consequence of the doping
of Co at the Zn site, all samples show competition between AFM and FM interactions, which are
associated with the observed unusual electrical transport and negative thermal expansion behavior.
The Mn3Zn1−xCoxN (x = 0.2, 0.4, 0.7, 0.9) compounds exhibit an abrupt resistivity jump phenomenon
near the magnetic phase transition, which originates from the shift of the Fermi surface triggered by
negative thermal expansion. Resistivity minima at low temperatures were observed in Mn3Zn1−xCoxN
(x = 0.4, 0.7, 0.9) and the e-e interaction is likely responsible.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/2/286/s1,
Figure S1: Magnetoresistance curves measured at 5 K for samples with x = 0.4 and 0.7. No magnetoresistance
phenomenon was observed.
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