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H I G H L I G H T S  

• Real-time energy management mode for multi-energy market is proposed. 
• An adaptive learning bidding strategy with reserve price adjustment and dynamic compensation mechanism is developed. 
• The optimized energy trading mode improves economy and renewable energy utilization. 
• Efficient and trustable multi-energy operation is implemented with blockchain.  
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A B S T R A C T   

Energy trading in the multi-energy market is affected by many uncertainties, especially the fluctuation of 
renewable energy sources and intermittent demand behavior of customers. The real-time energy management 
can effectively solve the impact of various uncertainties, ensure the instantaneous balance of energy and improve 
trading returns. A bidding strategy for multi-energy market is presented, in which reserve price adjustment and 
dynamic compensation mechanism is innovatively integrated into adaptive learning process. All energy trading 
participants conduct adaptive learning bidding adjustment based on real-time information in order to obtain 
higher transaction rate and transaction income. Meanwhile, adding dynamic compensation to the quoted price of 
fossil energy increases the consumption rate of renewable energy and reduces the emissions of pollutants. 
Furthermore, blockchain technology can ensure the seamless and effective performance of the presented bidding 
strategy. In the case study, the results show that our bidding strategy has an obvious advantage in social welfare 
and allocation efficiency than existing bidding strategies. Moreover, the problem of environmental pollution can 
be solved to a certain extent through flexible dynamic compensation. Finally, a decentralized application of 
blockchain is developed to demonstrate how the system could realize real-time energy management and dynamic 
trading in practice.   

1. Introduction 

Integrated energy utilization is an effective way to improve energy 
efficiency [1], reduce CO2 emissions, and increase renewable energy 
penetration [2], which are among the most important energy issues in 
the world. Thus, integrated energy systems (IESs) which are coupled 
with electricity, heat, cold, gas and other energy sources [3], are under 
rapid development [4]. The multi-energy market is the mode of energy 

transaction and transfer in the IES [5], and its main objective is to ensure 
the balance between supply and demand for energy sources [6], and to 
increase the proportion of renewable energy consumption [7]. Energy 
trading in the multi-energy market is affected by many uncertainties, 
especially intermittent behavior of renewable energy sources and fluc-
tuation in demand of customers [8]. The real-time energy management 
can effectively solve the impact of various uncertainties on the multi- 
energy market and ensure the instantaneous balance of energy [9]. 
Meanwhile, compared with fixed energy prices, real-time energy prices 
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Nomenclature 

Abbreviations 
IES integrated energy system 
PV photovoltaic 
WPP wind power plant 
CCHP combined cooling, heating and power 
DN distribution networks 
GB gas boilers 
DE demand of electricity 
DH demand of heat 
DC demand of cold 
EH electrical heating equipment 
EC electric refrigerating equipment 
ZI zero-intelligence 
ZI-C zero-intelligence with constraints 
ZI-P zero-intelligence with second-price 
AA adaptive aggressiveness 
PA positively self-adaptive 
ARC adaptive learning strategy with reserve price adjustment 

and dynamic compensation 
API application programming interface 
AB absorption refrigerator 
DApp decentralized application 
UI user interface 
EVM Ethereum virtual machine 

Variable 
SW social welfare 
AE allocation efficiency 
SWM social welfare maximization 
BE

DH bidding price of the heating load buyers to the electric load 
market 

QE
DH bidding amount of energy to be purchased the heating load 

buyers to the electric load market 
BE

DC bidding price of the cold load buyers to the electric load 
market 

QE
DC bidding amount of energy to be purchased the cold load 

buyers to the electric load market 
QE

DN amount of energy supplied by distribution network 
QE

WPP amount of energy supplied by wind power plant 
QE

PV amount of energy supplied by photovoltaic 
QE

CCHP amount of energy supplied by combined cooling, heating 
and power 

QE
DE bidding amount of energy to be purchased the electric load 

buyers to the electric load market 
BPA

i,t buyer’s bidding price in PA strategy 
SPA

i,t seller’s bidding price in PA strategy 
RBi,t reserve price of buyer i in t transactions 
RSj,t reserve price of sellers j in t transactions 
αt lowest revenue rate of a buyer 
βt lowest revenue rate of a seller 
Dj dynamic bidding compensation 
Bi,t buyers’ bidding price 
Si,t sellers’ bidding price 
P’ equilibrium price 
γt rational choice function 

Parameter 
BH

DH bidding price of the heating load buyers to the heat load 
market 

QH
DH bidding amount of energy to be purchased of the heating 

load buyers to the heat load market 
ηEH conversion efficiency of electric heating 

μDH distribution coefficient of demand of heat 
BC

DC bidding price of the cold load buyers to the cold load 
market 

QC
DC bidding amount of energy to be purchased of the cold load 

buyers to the cold load market 
ηEC the conversion efficiency of electric to cold 
μDC distribution coefficient of demand of cold 
QC

CCHP amount of energy supplied by combined cooling, heating 
and power to the cold load market 

QH
CCHP amount of energy supplied by combined cooling, heating 

and power to the heat load market 
QH

GB amount of energy supplied by the gas boilers to the heat 
load market 

WE
CCHP,min minimum generation power constraints of the combined 

cooling, heating and power 
WE

CCHP,t generation power of the combined cooling, heating and 
power at time t 

WE
CCHP,max maximum generation power constraints of the combined 

cooling, heating and power 
ME

CCHP power generation climbing speed constraint of the 
combined cooling, heating and power 

QE
CCHP,t amount of electricity generated by the combined cooling, 

heating and power at time t 
WH

CCHP,min minimum heating power constraints of the combined 
cooling, heating and power 

WH
CCHP,t heating power of the combined cooling, heating and power 

at time t 
WH

CCHP,max maximum heating power constraints of the combined 
cooling, heating and power 

MH
CCHP heat generation climbing speed constraint of the combined 

cooling, heating and power 
QH

CCHP,t amount of heat generated by the combined cooling, 
heating and power at time t 

WC
AB,t cold power of the absorption refrigerator at time t 

WC
AB,max maximum cold power constraints of the absorption 

refrigerator 
MC

AB cold generation climbing speed constraint of the 
absorption refrigerator 

QC
CCHP,t amount of cold generated by the absorption refrigerator at 

time t 
WH

GB,t heating power of the gas boilers at time t 
WH

GB,max maximum heating power constraints of the gas boilers 
MH

GB heat generation climbing speed constraint of the gas 
boilers 

QH
GB,t amount of heat generated by the gas boilers at time t 

WH
EH,t heating power of the electrical heating equipment at time t 

WH
EH,max maximum heating power constraints of the electrical 

heating equipment 
MH

EH heat generation climbing speed constraint of the electrical 
heating equipment 

QH
EH,t amount of heat generated by the electrical heating 

equipment at time t 
WC

EC,t cold power of the electric refrigerating equipment at time t 
WC

EC,max maximum cold power constraints of the electric 
refrigerating equipment 

MC
EC cold generation climbing speed constraint of the electric 

refrigerating equipment 
QC

EC,t amount of cold generated by electric refrigerating 
equipment at time t 

Pt trading price in t transactions 
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are more conducive to play the role of market mechanisms [10], and 
maximizing the profit incurred while considering customer participation 
[11]. 

There has been increasing research interest and publications on the 
real-time energy management, where diverse approaches have been 
pursued, e.g. particle swarm optimization [12], ant colony optimization 
[13], mixed-integer linear programming [14], multi-objective operation 
optimization [15] and game theoretical agent-based approaches 
[16,17]. These methods all involve a center that manages transactions in 
the multi-energy market [18], as the participating units upload infor-
mation to the center, which then determines the energy management 
strategy and sends it to each unit [19]. However, the data information 
increases geometrically with the increase of participants, which im-
proves the difficulty of scheduling resources in real-time energy man-
agement [20]. Meanwhile, the data of these methods is controlled by a 
central institution, which makes it difficult for participating units to 
adjust their bidding strategies based on real-time information [8], and 
reduce transaction rates and overall profit [11]. Therefore, several 
scholars have presented double auction mechanism that can be used for 
distributed energy management [21], in order to achieve real-time uti-
lization of energy supply side and active participation of energy demand 
side [22]. The double auction is a kind of market mechanism which 
confirms the transaction price and completes the resource allocation on 
the premise of market trader bid [23], and the bidding strategy de-
termines whether this mode is suitable for the multi-energy market. 

Bidding strategies can be divided into two categories: learning ability 
and non-learning ability. Zero-intelligence (ZI) strategy does not have 
learning ability. In this strategy buyers and sellers do not consider other 
information in the market when making a bid. In the actual auction 
mechanism, Zero-intelligence with constraints (ZI-C) strategy is usually 
adopted in order to avoid random bidding to disturb the trading order 
[24]. The ZI with second-Price (ZI-P) strategy is the earliest bidding 
strategy to adopt a learning mechanism, in which buyers or sellers set 
their expected profit margins according to the historical successful 
transaction price and failed transaction price in the market, and then 
adjust their bidding prices [25]. The Adaptive Aggressiveness (AA) 
strategy takes the frequent price fluctuations into account in the 
continuous auction market, which enables the trader to adjust the price 
in time according to the market changes [26]. Yang et al. [27] proposed 
a positively self-adaptive (PA) strategy with learning ability that make 
bidding price based on all the historical transaction information. 

In the field of electricity and energy systems, more and more studies 
focus on the double auction mechanism and bidding strategies of the 
energy market [28]. Li et al. [29] showed that the auction scheme and 
bidding strategy can not only ensure the privacy of participants but also 
effectively facilitate demand response in the smart grid, with respect to 
social welfare, satisfaction ratio and computational overhead. Yu et al. 
[30] adopted the integrated two-stage market clearing algorithm as the 
bidding strategy, and took the two-way electricity market in Yunnan, 
China as the actual scene to verify the market superiority of the adaptive 
bidding strategy. Lin et al. [31] analyzed several auction mechanisms 
and bidding strategies, and proved the best-offer game theoretic strategy 
which have a higher economic efficiency than discriminatory and uni-
form bidding strategies. Wang et al. [26] used AA strategy in the 
decentralized electricity transaction and divided bidders into three rigid 
categories which limit its flexibility in the market. Zhao et al. [32] 
proposed a double auction mode for integrated energy transactions, 

although he did not study a corresponding bidding strategy. Previous 
studies have demonstrated the advantages of bidding strategies with 
learning ability in energy markets. It is worth noting that these studies 
do not consider the problems of the multi-energy market, such as real- 
time price fluctuations, dynamically adjusted power consumption plan 
and frequent electricity fees settlement [33]. On the other hand, bidding 
strategies with learning ability require each energy trader to master real- 
time information about the system. 

Meanwhile, to facilitate efficient transaction in the multi-energy 
market, a more flexible and stable energy trading system is required 
[34]. The blockchain-enhanced energy trading stands out to be a suit-
able solution for the following reasons: Firstly, the distributed network 
based on blockchain avoids the trading center through the bottom-up 
energy management mode [35]. This mode can not only ensure the 
privacy of participants but also effectively facilitate demand response in 
the energy system [36]. Secondly, the threshold for energy producers 
has been lowered by blockchain, prompting more energy sellers to join 
the multi-energy market [37]. Thirdly, energy buyers can freely choose 
the mode of energy use through this trading system, and promote the 
reduction of energy consumption cost [38]. Fourth, the chain data 
structure of blockchain can automatically record the previously reached 
transaction agreement according to the transaction time, and solve the 
problem of information inconsistency through a unique consensus 
mechanism. Finally, the decentralized trust method of blockchain can 
eliminate the central institution or third-party intermediary, which 
helps the IES to save operating costs, avoid energy monopoly and reduce 
the risks of data security [39]. 

Motivated by all the potential advantages, active attempts have been 
made in the design and implementation of blockchain enabled energy 
trading market [2,40]. The first energy blockchain trading system has 
been set up in Brooklyn, New York, which sell rooftop solar power from 
five households to another five households directly. This study had set a 
precedent of adopting blockchain technology in the energy sector [41]. 
In the field of chemical industry, blockchain technology can be used to 
construct smart contracts under the machine-to-machine mode for 
power generation and power consumption equipment. This study 
explored blockchain technology in relation to Industry 4.0 [42]. Simi-
larly, blockchain can solve the fraud problem in carbon emissions 
transaction and improve the management efficiency in industry 4.0 
mode [43]. In terms of energy demand side management, smart con-
tracts and decentralized identifier guaranteed by blockchain network 
can create a seamless, secured and efficient distributed energy system 
[44]. In [45], a method based on blockchain is presented to manage the 
energy demand and realized the independent maintenance of the 
transaction information though smart contracts. Despite the rapid 
development of energy blockchain technology, active work is still 
needed to develop feasible systematic protocols for blockchain enabled 
the real-time energy management in multi-energy market. 

In general, the double auction mechanism and the adaptive learning 
bidding strategy can improve the efficiency and income of the energy 
market. However, the existing energy bidding researches aimed at 
electricity trading, which focus on the electricity price adjustment. The 
bidding strategy of multi-energy market considering real-time energy 
management and interaction effects of electricity, cooling and heating 
systems have not been reported. Meanwhile, there is a research gap on 
the implementation of the bidding strategy based on blockchain to the 
multi-energy market. 

Qt trading amount in t transactions 
ωt weight in t transactions 
Qmax total amount of energy that all sellers can provide 
Qt− 1 total amount of energy that has been traded 
SPt transaction price sequence up to round t 
SBt buyer’s bidding price sequence up to round t 

SSt seller’s bidding price sequence up to round t 
Vi buyer’s reserve price 
Cj seller’s reserve price 
en pollutant quantity of per unit energy supply n emitted 
fn environmental treatment cost of unit quantity n emitted  
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In this paper, we propose an optimized bidding strategy to achieve 
real-time energy management for multi-energy market. This adaptive 
learning bidding strategy with reserve price adjustment and dynamic 
compensation mechanism is proposed, and we call it AR-C strategy. The 
presented method can be developed by blockchain network to ensure 
the seamless and effective performance. The contributions and novelties 
of this work are as following:  

(1) Three interactive energy trading platforms are designed to 
conduct double auction of electricity, heat and cold. The system 
facilitates comprehensive utilization of renewable energy 
through free trading and real-time price.  

(2) An original bidding strategy (AR-C strategy) for multi-energy 
market is presented, in which reserve price adjustment and dy-
namic compensation mechanism is innovatively integrated into 
adaptive learning process. This mode improves transaction rates 
and trading returns, and increases the consumption rate of 
renewable energy in the energy system.  

(3) A blockchain based network framework is designed to facilitate 
transaction of all users according to the proposed bidding strat-
egy. This blockchain network ensures the theoretical model can 
be applied in practice.  

(4) The trading mode proposed in this study takes into account multi- 
energy interaction, flexible and adaptive bidding strategy, real- 
time energy management etc. This work provides reference for 
comprehensive energy utilization and diversified energy market 
transactions. 

This paper is structured as follows: Section 2 explains the system 
structure and energy management mode. Sections 3 and 4 show the 
bidding methodology presented and how blockchain can implement the 
real-time energy management. Section 5 demonstrates the feasibility of 

the method through a case study and Section 6 discusses conclusions and 
future work. 

2. System structure and energy management model 

2.1. System structure 

Integrated energy utilization has broken through the technical, 
market and management barriers of the traditional energy system, and is 
a comprehensive energy system with unified planning and dispatch of 
electricity, gas, heat and cooling, et al [46]. CCHP is a typical energy 
integration system, which improves the efficiency of primary energy 
utilization through the cascade utilization principle [47]. Moreover, the 
penetration of renewable energy can further reduce the impact of IES on 
the environment, and the coupling of multiple energy sources can 
effectively alleviate the uncertainty of renewable energy [48]. Although 
the coupling of multiple energy sources brings difficulties to the eco-
nomic and stable operation of the traditional energy system, reasonable 
optimization strategies can break this barrier and realize the situation of 
multi-energy economic and efficient utilization [49]. 

According to the physical properties of energy supply and demand, 
the modern IES can be divided into three energy types: electricity, heat 
and cold. Therefore, three parallel and interactive energy management 
platforms are constructed for these kinds of energy transaction. Energy 
sellers generally include distributed renewable energy sources such as 
photovoltaic (PV) and wind power plant (WPP), thermal power gener-
ator which combined cooling, heating and power (CCHP), distribution 
networks (DN), gas boilers (GB), and some energy storage devices. Ac-
cording to the energy demand, energy buyers can be divided into de-
mand of electricity (DE), such as residential and commercial power 
users, demand of heat (DH), such as residents heating, and demand of 
cold (DC), such as cold storage. Buyers or sellers could conduct energy 

Demand of 
Electricity

Demand of 
Cooling

DN

WPP

PV

Demand of 
Heat

CCHP

GB

Electric power 
trading platform

Heat power 
trading platform

Cooling power 
trading platform

Energy trading 
platforms

Energy supply Energy demand

Transaction

Data N

Block N+1

Transaction

Data N-1

Block N

Transaction

Data N+1

Block N+2

Electric bidding information Cooling bidding information Heat bidding information Transaction information

Electric 
cooling

Electric 
heating

Fig. 1. Energy management mode of multi-energy market.  
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transactions respectively based on their own energy supply and demand 
patterns on the three platforms. Each participant could supply or de-
mand one kind of energy, as well as supply or demand other energy 
sources at the same time. For example, CCHP can conduct different types 
energy transactions in three market platforms. 

The conversion efficiency of energy conversion equipment is the 
ratio of output power and input power, as Eq. (1). 

η = Wout/Win (1) 

Due to the popularity of electrical heating equipment (EH) and 
electric refrigerating equipment (EC), heat/cold buyers can participate 
in the two trading platforms of electricity and heat/cold respectively, 
and choose directly to purchase heat/cold or to purchase electricity and 
use energy conversion equipment to heat or cold. After heating load 
buyers have determined the bidding price (BH

DH) to a heat load market 
and the expected amount of energy to be purchased (QH

DH), the bidding 
price (BE

DH) and quantity (QE
DH) can be calculated by Eq. (2) and (3), and 

the transaction can be conducted to the electric load market at the same 
time. 

BE
DH = BH

DH ⋅ηEH (2)  

QE
DH = μDH ⋅QH

DH/ηEH (3)  

where ηEH is the conversion efficiency of electric heating, and its value 
represents the amount of heat power quantity that can be generated per 
unit of electric quantity. μDH is the distribution coefficient of demand of 
heat, and represents the proportion of the total thermal load demand 
met through the electrical heating equipment. 

Similarly, after determining the bidding price (BC
DC) to the cold load 

market and the expected amount of energy to be purchased (QC
DC), the 

electricity price (BE
DC) and electricity quantity (QE

DC) can be calculated by 
Eq. (4) and (5), and the transaction can be conducted to the electric load 
market at the same time. As shown in Eq. (4) and (5), where ηEC is the 
conversion efficiency of electric refrigerating equipment and μDC is the 
distribution coefficient of demand of cold. 

BE
DC = BC

DC⋅ηEC (4)  

QE
DC = μDC⋅QC

DC/ηEC (5)  

2.2. Energy management model 

The energy management model designed in this study is based on the 
double auction mechanism and blockchain distributed network. In the 
double auction mechanism, buyers and sellers can adjust the quotation 
in real time according to the change of the market equilibrium price, 
which ensures the efficient distribution of energy. The combination of 
double auction mechanism and blockchain technology can effectively 
solve the problems of privacy and resource allocation, and ensure the 
maximum benefit of buyers and sellers. The double auction scheme can 
not only ensure the privacy of participants [50] but also effectively 
facilitate demand response in the smart grid, with respect to social 
welfare, satisfaction ratio, social efficiency, and computational over-
head [29]. 

The energy management mode of multi-energy market as shown in 
Fig. 1. A double auction is conducted with a fixed time slot during the 
operation of the system. At time t, each participant can publish the en-
ergy transaction information of the t + 1 time slot through its network 
node, and upload the information to the blockchain network. Energy 
information includes types of energy supply and demand, energy 
quantity, bidding price, etc. The system is classified according to 
different energy types, and each energy trading platform ranks the 
bidding information of energy buyers and sellers according to the ex-
pected price. In every energy trading platform, transaction occurs when 
the highest bidding price of buyers is equal to or lesser than the lowest 

bidding price of sellers. During the matching process, the highest bid-
ding price of buyers is matched with the lowest bidding price of sellers, 
and the transaction price is the average of their bidding prices. This 
matching process is called round of transaction and continues until the 
highest bidding price of buyers is lower than the lowest bidding price of 
sellers [51]. 

The double auction proposed in this study is not continuous double 
auction, which means that if an energy buyer does not reach a trans-
action at an auction, the energy will be provided by the external dis-
tribution networks. And if an energy seller fails to reach a deal, the 
bidding strategy will be adjusted according to the market information in 
order to reach a deal agreement in the next auction. This mode effec-
tively shortens the time of matching transactions and adapts to the real- 
time energy management. It improves the computational and opera-
tional efficiency for the multi-energy market. In particular, the modern 
IES is connected to the distribution networks. When the energy buyer 
fails to match the suitable seller in the system, it is easy to obtain the 
corresponding energy from the distribution networks and conduct en-
ergy transmission and transaction settlement with it. After the end of the 
matching transaction at time t, the energy dispatching and transmission 
will be carried out according to the reached energy transaction agree-
ment between time t and time t + 1. At time t + 1, the system matches 
the bidding price of the next transaction, and records the energy trans-
mission quantity from time t to time t + 1 through metering equipment 
which is connected to the blockchain network and automatically settles 
energy transaction fees based on the agreed transaction price. 

The basic principle of double auction and market clearing in tradi-
tional electricity markets is the matching of high bid price and low 
selling price. The lower price offered by the generator, the easier it is to 
conclude a deal, which makes it easier to sell low-cost but highly 
polluting fossil energy. In order to solve this problem, we propose a 
dynamic compensation to increase the price advantage of renewable 
energy. This compensation mechanism will be discussed in the Section 
3.3 later. 

In addition, the traditional transaction model relies on third-party 
agencies. But the transaction model proposed in this paper realizes the 
peer-to-peer transaction between users and energy suppliers. The 
agencies in the transaction model only handle disputes between buyers 
and sellers, and the decentralized properties have not changed. In the 
traditional transaction model, the transaction data is stored in a 
centralized server, and it is not transparent. Therefore, it faces the risk of 
tampering and cannot be traced back. Blockchain technology integrates 
asymmetric encryption technology, data signatures and consensus 
mechanisms to ensure that transaction data is transparent, tamper proof, 
and traceable, which solves the above problems well. The market 
clearing based on the unique consensus mechanism of blockchain can 
resolve the problem of information inconsistencies [52], especially for 
the heat or cooling demand load that sends the transaction request to 
two trading platforms. 

2.3. Constraint condition 

During the operation of the multi-energy market, the energy con-
servation and equipment safety must be considered. In the electric 
power trading platform, the supply of electricity quantity is equal to the 
demand of electricity quantity at time t, as shown in Eq. (6). 

QE
DN +QE

WPP +QE
PV +QE

CCHP = QE
DE +QE

DC +QE
DH (6) 

The energy conservation constraint of the cooling and heat power 
trading platform can be calculated by Eq. (7) and (8) 

QC
CCHP = QC

DC (7)  

QH
CCHP +QH

GB = QH
DH (8) 

In general, every participant in a long-lived multi-energy market is 
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rational. Therefore, we assume that the amount of these energy sellers 
and buyers submit to trading platforms is reasonably predicted. There is 
no possibility of repeat transactions for participants who only trade on 
one energy trading platform. However, constraint conditions are 
required to limit repeat transactions for units that submit trading re-
quests to both energy trading platforms, such as the demand of cooling 
and the demand of heat. The limiting condition of a cooling buyer that 
contains an electrical cooling device can be calculated by Eq. (9). 
Similarly, the limiting condition of thermal load buyer can be calculated 
by Eq. (10). 

QC
EC +QC

platform = QC
DC (9)  

QH
EH +QH

platform = QH
DH (10)  

where QC
EC is cooling load of electrical cooling equipment, and QH

EH is 
heat load of electrical heating equipment. QC

platform and QH
platform are 

represent the amount of energy that buyers purchase directly from the 
cooling power or heat power trading platform. 

The main operation constraints of equipment safety are the upper 
and lower limits of power and climbing speed of various energy equip-
ment. This paper mainly discusses the constraints of CCHP, absorption 
refrigerator, GB, electrical heating equipment and electric refrigerating 
equipment. The constraint conditions of CCHP are mainly studied from 
the aspects of electricity quantity, heat quantity and cooling power. And 
the constraint condition of CCHP to generate cooling power is mainly 
affected by the absorption refrigerating machine. The lower limit 
constraint of absorption refrigerator and GB is 0, and the lower limit of 
other equipment depends on the unit condition. Therefore, the 

constraint conditions and energy conversion formula of the above 
equipment can be summarized as shown in Eq. (11)–(13). 

Wn
m,min ≤ Wn

m,t ≤ Wn
m,max (11)  

Wn
m,t+1 − Wn

m,t ≤ Mn
m (12)  

Qn
m,t = Wn

m,t⋅T (13)  

where m can take CCHP, absorption refrigerator, GB, electrical heating 
equipment and electric refrigerating equipment. And n can take E, C, 
and H. 

According to whether it is connected to the distribution network, 
IESs can be divided into two types: off grid and grid connected. At 
present, except in remote areas such as islands, almost all IESs are grid 
connected. There are several advantages in joining the distribution 
network to energy trading in the multi-energy market. Firstly, the dis-
tribution network provides more sufficient power to ensure the security 
of energy supply. Secondly, the trading price of distribution network in 
most countries fluctuate within one day, which helps the energy demand 
side to actively adjust the energy consumption habit according to the 
price fluctuation. Finally, the addition of distribution network can pro-
vide sufficient power for electrical heating equipment and electric 
refrigerating equipment, and improve flexibility of multi-energy market. 
Therefore, we are adding distribution networks to the multi-energy 
market transactions to ensure that all types of energy needs can be 
satisfied in real time. 

3. AR-C strategy in multi-energy market 

The AR-C strategy is a bidding strategy with adaptive learning mode 
and dynamic compensation mechanism. The schematic of AR-C strategy 
is shown in Fig. 2. According to the real-time information of the multi- 
energy market, it conducts adaptive learning which includes two process 
of quoted price adjustment and reserve price adjustment. If energy 
sellers use fossil energy, environment cost is considered to get a dynamic 
compensation revised quoted price. The real-time information is upda-
ted by the trading system immediately after each double auction. 

3.1. Evaluation indexes 

There are many definitions and evaluation indicators for the auction 
process and auction results in the energy double auction. This study 
selects social welfare (SW) as one of the economic indicators to evaluate 
the bidding strategy. It is made by double auction transaction to create 
the revenue scale of the whole society, that is, sum of the total revenue of 
buyers and sellers in the auction. Earnings from a single transaction are 
usually expressed as the product of the difference between the trans-
action price and the reserve price and the number of transactions. The 
SW can be generally expressed as Eq. (14). 

SW =
∑T

t=0

{
∑I

i=1

[
RBi,t − Pi,t

]
⋅Qi,t +

∑J

j=1

[
Pj,t − RSj,t

]
⋅Qj,t

}

(14)  

where RBi,t and RBj,t represent the reserve price of buyer i and seller j in t 
transactions, Pt represents the transaction price, and Qt represents the 
amount of energy for the transaction. 

In addition, allocation efficiency (AE) is also one of the important 
performance evaluation indicators of double auctions. It is the ratio of 
the actual total revenue of trading parties to the competitive equilibrium 
total revenue. Competitive equilibrium is an ideal state in which SW is 
maximized. Therefore, AE can be expressed as the ratio of actual SW to 
social welfare maximization (SWM) [53], as indicated by Eq. (15). 

AE = SW/SWM (15) 

Market competition equilibrium refers to the balance between 

Start

Collect market real-time information 
from blockchain platform

Fossil energy?

Dynamic bidding compensation

Confirm the bidding

Submit to blockchain platform

Make a deal?

End

Yes

No

No

Update real-time
 information

Yes

Quoted price 
adjustment process

Reserve price 
adjustment process

Adaptive learning

Fig. 2. Schematic of the AR-C bidding strategy.  
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buyers and sellers in the market or economy, which has the character-
istics of perfect competition. It is a market structure without any 
obstruction and interference, which means that the existence of the 
market is not enough to affect the prices of enterprises or consumers 
[25]. In a distributed energy market, every participant is equal and no 
one has a dominant position. The equilibrium price P’ cannot be ob-
tained in advance but can be estimated by calculating the weighted 
moving average of the transaction prices of the recent T historical 
transactions, as shown in Eq. (16). The total return of competitive 
equilibrium is the total amount of each transaction at the market equi-
librium price, namely SWM [54]. 

P’ =
∑T

t=0
[ωt⋅Pt] (16)  

3.2. Adaptive learning mode 

3.2.1. Quoted price adjustment process 
The trading information is not uniformly in each double auction 

conducted by the system. In the initial stage of the transaction, partic-
ipants are more inclined to gain more benefits instead of paying much 
attention to the probability of the transaction so that the adjustment of 
the quoted price is slow. But some participants will become more 
aggressive after several rounds of auctions have failed to reach a deal, 
and then they will speed up the adjustment of the quoted price in order 
to obtain a higher probability of transaction. Through the analysis of 
quote adjustment rules, the rate of quoted price adjustment is a non- 
linear concave line. Therefore, the rational choice function γt is pre-
sented to realize the adaptive learning of participants. The value of γt 
determines the adjustment range of quoted price by judging the ideal 
degree of market environment. For the energy buyers, the value of γt is 1 
in the most ideal case, which means that they expect to complete the 
transaction at the lowest price within the acceptable range to maximize 
the revenue. In the least ideal case the value is 0, which means that the 
transaction is expected to be completed at the highest price within the 
acceptable range to maximize the probability of the transaction. 
Meanwhile for the energy sellers, γt is the opposite. It can vary with 
market conditions from 0 to 1 to change the proportion of historical 
quoted price maximum and minimum in the bidding strategy. It is 
related to the number of transactions in the previous t-1 and the amount 
of energy Q given in Eq. (17). 

γt = 1 − Q2
t− 1/Q2

max (17) 

With the promotion of the transaction rounds, the quoted price of 
buyers will change from the minimum value of the historical quoted 
price to the maximum value, in order to get a greater probability of 
transaction. The sellers’ quoted price changes from the maximum to the 
minimum value of the historical quoted price. For each bidding trans-
action in the market, all buyers and sellers need to adaptive amend 
quoted price according to the relationship between the return and the 
probability. 

Up to round t, the transaction price sequence of each participant in 
the multi-energy market is SPt, and the corresponding buyer’s quoted 
price sequence of the successful transaction is SBt , and the seller’s 
quoted price sequence is SSt . According to the order of the successful 
transaction, the participant can obtain historical information from the 
blockchain network. The bidding strategy that only considers adaptive 
learning by oneself process is known as PA strategy [55]. Assuming that 
all participants are rational, honest and credible, their quoted price will 
not be lower than their respective reserve price. Therefore, the quoted 
price is corresponding to PA strategy is given by Eq. (18) and (19). 

BPA
i,t = min{min(SBt− 1)⋅γt +max(SBt− 1)⋅(1 − γt),Vi } (18)  

SPA
i,t = max

{
max(SSt− 1)⋅γt +min(SSt− 1)⋅(1 − γt),Cj

}
(19)  

where Vi is the buyer’s reserve price that represents the valuation of the 

energy to be purchased, and Cj is the seller’s reserve price that represents 
the cost of energy supplying. 

3.2.2. Reserve price adjustment process 
In the existing bidding strategies, the reserve price is regarded as a 

fixed value, and its influence on the bidding is not considered. However, 
setting different reserve prices in the actual auction will have an impact 
on the market [56]. Therefore, we not only consider the quote adjust-
ment in the bidding strategy, but also adjust the reserve prices of all 
participants according to the real-time information adaptively. The cost 
or valuation of each participant in the double auction market is private 
and not public, so that each participant cannot get the accurate revenue 
of others. However, participants can estimate the revenue of other 
participants based on the market information, which is called a pre-
sumptive revenue rate. This study used the parameter to adjust the 
reserve price in the bidding strategy. The lowest revenue rate of a buyer 
or seller is αt or βt , which is obtained respectively based on the buyers’ 
quote sequence SBt and sellers’ quote sequence SSt in the successful 
transactions, as shown in Eq. (20) and (21). 

αt = min[(SBt− 1 − Pt− 1)/SBt− 1 ] (20)  

βt = min[(Pt− 1 − SSt− 1)/SSt− 1 ] (21) 

According to the presumptive revenue rate, reserve price Vi or Cj can 
be adjusted adaptively and make the constraints of the bidding strategy 
acceptable soft in real time. The modified reserve prices for buyers and 
sellers are RBi,t and RSj,t given in Eq. (22) and (23). 

RBi,t = Vi⋅(1 − αt) (22)  

RSj,t = Cj⋅(1 − βt) (23)  

3.3. Dynamic compensation mechanism 

Although the cost of generating electricity from renewable energy 
sources such as WPP and PV has been reduced gradually in recent years, 
its cost is higher than fossil energy such as thermal power generation. 
Under the completely free market competition mechanism, the quoted 
price of renewable energy seller is likely to be higher than the quoted 
price of fossil energy seller. The obvious price disadvantage reduces the 
utilization ratio of renewable energy, such as WPP and PV. On the other 
hand, fossil energy will produce pollutant emissions such as carbon di-
oxide, sulfur dioxide, which will cause damage to the surrounding 
environment. 

This study adds dynamic compensation mechanism for fossil energy 
sellers in a fully liberalized multi-energy market, which is directly added 
to their quoted prices in order to reduce the price advantage. When fossil 
energy sellers reach a transaction through the compensation, the prod-
uct of the energy unit price corresponding to the compensation and the 
supply amount is regarded as the environmental impact cost. This cost 
can be delivered to the environmental management department and 
used for environmental governance. The dynamic compensation is Dj 
given by Eq. (24). The determination of dynamic compensation is based 
on the pollutant emissions of the fossil energy and the environmental 
treatment cost of the pollutant. 

Dj =
∑N

n=1
(e1⋅f1 + e2⋅f2 +⋯+ en⋅fn) (24) 

The parameter en represents the pollutant quantity of per unit energy 
supply n emitted from the fossil energy seller j. And fn represents the 
environmental treatment cost corresponding to the unit quantity of 
pollutants n. The values of en and fn are determined according to the 
actual situation of the area. 

3.4. Pricing strategy 

As mentioned above, the target price of participants is their ideal 
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price. If participants follow their target price as a bidding strategy, the 
deal may never be completed. Therefore, before each round of double 
auction, energy buyers can calculate the final quote and reserve price 
with adaptive learning mechanism. The bidding price of a buyer is 
indicated by Eq. (25). 

Bi,t = min[min(SBt− 1)⋅γt +max(SBt− 1)⋅(1 − γt),RBi ] (25) 

For energy sellers in multi-energy market, the corresponding dy-
namic compensation needs to be added. Therefore, the sellers’ bidding 
price is depicted by Eq. (26). 

Si,t = max
[
max(SSt− 1)⋅γt +min(SSt− 1)⋅(1 − γt),RBj

]
+Dj (26)  

where Dj of one fossil energy seller is calculated according to Eq. (24). 
And since no pollutants are emitted during the renewable energy 
operation, Dj of a renewable energy seller can be taken as zero. 

3.5. Balance mechanism 

Since both energy buyers and sellers predict the energy quantity of 
the next time slot in advance, the energy transaction of each double 
auction is conducted accordingly. However, there are errors in the 
prediction of energy supply power, especially for renewable energy 
sellers such as WPP and PV, there will be the problem of intermittency 
and uncertainty due to the influence of weather. Therefore, when the 
energy seller in the transaction is unable to provide enough energy, the 
energy buyer will switch to electricity supplied by the distribution net-
works. The buyers of heating load and cold load can also use the power 
of the distribution networks to meet their own energy requirements 
through electrical heating equipment and electric refrigerating equip-
ment, such as air conditioners. In particular, the transmission of elec-
tricity is faster than heating and cold. Real-time electricity dispatching 
can ensure the energy demand timely. 

In the multi-energy market, every participant is equipped with 
metering equipment such as smart meters, calorimeters, and flow me-
ters. The double auction could determine the energy trading parties and 
the unit price of the transaction. The final energy supply quantity is 
determined actual measurement data and settle the expenses according 
to the agreed transaction price. The trading information and energy 
transmission data in the system are uploaded to the network, and energy 
management and expense settlement are conducted in the network 
platform based on blockchain technology. 

4. Blockchain implementation of energy management 

The seamless and effective performance of AR-C strategy require the 
real-time information to be available to every participant in the multi- 
energy market. Blockchain has an ideal energy management functions 
in the real-time market. This technology provides a decentralized 
transaction network for a variety of energy systems. Data is stored on 
each participating node in a distributed mode and updated in real-time 
to help participants adjust bidding information. Smart contracts on the 
blockchain adopt “code is contract, code is law” for the fair energy 
transactions and dispatching. Finally, the traceability and non- 
tampering ensure the security of data in the energy system. 

The multi-energy market transaction architecture based on block-
chain can be divided into seven layers, as shown in Fig. 3. It includes the 
physical layer, the data layer, the network layer, the consensus layer, the 
transaction layer, the execution layer, and the application layer. The 
lower layer provides an interface to the upper layer that realize the real- 
time dissemination of information in these seven architecture levels.  

(1) The physical layer includes energy production equipment, energy 
conversion equipment, energy metering equipment, and energy 
application equipment in a multi-energy market. These devices 
are the physical basis of IES and a requirement for energy supply, 
use and transmission.  

(2) The data layer is a chain database with time-stamp, which backs 
up all the historical transaction data and stores it in the partici-
pating nodes of the system, forming a distributed ledger struc-
ture. All historical information can be traced back and cannot be 
tampered. 

(3) The network layer is used for the authentication and identifica-
tion. It provides Peer-to-Peer network protocols and data trans-
mission. There is no central node, and the failure of individual 
nodes will not affect the whole network, which bring higher se-
curity and fault tolerance. 

(4) The consensus layer is used to encapsulate the consensus mech-
anism and consensus algorithm of the blockchain, and provides 
an application programming interface (API) to the transaction 
layer.  

(5) The transaction layer makes the power matching and agreement 
among the energy buyers and sellers. It classifies according to the 
energy attributes, uses a double auction mechanism and the AR-C 
bidding strategy to match the energy transactions, and then form 
the smart contract. 

Fig. 3. Blockchain network structure of the multi-energy market.  Fig. 4. Energy management process of the multi-energy market based 
on blockchain. 
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(6) The executive layer is used to execute the transaction layer’s 
smart contracts as well as perform energy transfers and metering. 
It relies on the energy transmission equipment, such as trans-
mission lines and heating pipelines.  

(7) The application layer is used to provide transaction entry for 
participants and managers, as well as applications such as API, 
historical information query and data analysis. 

A typical blockchain energy management process in the multi-energy 
market is shown as Fig. 4. Firstly, each participant in the system uploads 
energy supply and demand information to the blockchain network 
through communication devices such as computers or mobile phones at 
the start of each double auction transaction. Secondly, the energy clas-
sification and matching transactions are performed according to the 
method mentioned above after the blockchain network platform collects 
all the information. Thirdly, the trading information after matching is 
successfully converted into time-stamped data blocks and stored in the 
network by using the hash function. And then the blockchain network 
broadcasts matching transaction results to various energy trading en-
tities through a real-time data processor, including the matching of 
energy buyers and sellers, and the final pricing. Finally, after the 
completion of the matching transaction, the completed transaction 
agreement shall be executed within the corresponding time slot t for the 
energy transfer and measurement of electricity, heat and cold. A new 
matching transaction and the settlement of fees are performed when the 
next double auction begins. 

The energy settlement determines the energy transfer amount for 
each time slot by reading the metering equipment through the block-
chain network. It assigns a unique ID to the energy transfer amount 
corresponding to each transaction, and add a time stamp to form a data 
block as a basis for real-time settlement. The settlement amount is the 
product of the final transaction agreement price and the data through 
measurement and authentication. The settlement amount is automati-
cally deducted from the buyer’s account and transferred to the seller’s 
account. Blockchain platform will send a recharge request when the 
remaining funds in the account of the buyer are insufficient for paying 
the settlement amount. And the overdue payment buyers would be 
automatically removed from the energy trading network and the deposit 
in the account could be deducted. 

5. Case study 

5.1. System description 

A multi-energy market scenario is constructed by taking Chinese 
typical grid-connected IES as an example. The scenario on an island in 

East China (Longitude 122.40◦, 30.10◦ north latitude) is utilized for the 
energy supply system. This system contains 2 × 1 MW WPP, 5 × 0.2 MW 
PV and 1 × 1 MW gas CCHP unit [53]. In addition, in order to balance 
the heating load demand in the system effectively, one 0.5 MW gas-fired 
hot water boiler is added as GB unit to the system. The parameters of 
WPP are assumed to νin = 3 m/s, νrated = 14 m/s and νout = 25 m/s, 
shape bearing parameter ϕ = 2 and scale parameter ϑ = 2ν/

̅̅̅
π

√
[57]. 

The PV radiation intensity parametersα and β are set as 0.3 and 8.54 
respectively [58]. The output power of WPP and PV can be simulated 
through the prediction curves obtained by referring to the uncertainty 
factor scenario simulation and reduction method described in reference 
[59], as shown in Fig. 5. 

The energy demand side of this system has five energy buyers include 
two electric demand buyers as Demand of Electric 1 and 2 two heat 
demand buyers as Demand of Heat 1 and 2, one cold demand buyer is 
Demand of Cold. The heat and cold buyers have their own EH and EC 
equipment such as electric heaters and air conditioners. The basic pa-
rameters of CCHP, GB and some energy conversion equipment including 
absorption refrigerator, electrical heating equipment and electric 
refrigerating equipment, are referenced in the case scenario of reference 
[60] as shown in Table 1. As a typical community resident in the system, 
the electricity consumption of Demand of Electric 1 is relatively low at 
daytime, and gradually increases the electricity consumption from 4 p. 
m. to 7 p.m. until the peak. Demand of Electric 2 is a typical commercial 
buyer and its electricity consumption is relatively low at night, and the 
electricity consumption increases from 9 a.m. and peaks at 12 a.m. 
Demand of Heat 1 and 2 are assumed to residents needed heating and 
have significantly higher demand at night than that of daytime. Demand 

Fig. 5. Prediction values of WPP and PV output.  

Table 1 
Basic parameters of energy conversion equipment.  

Equipment Conversion 
efficiency 

Maximum 
power (MW) 

Minimum 
power (MW/ 
min) 

Climbing 
speed (MW/ 
min) 

CCHP/E 0.35 1.00 0 0.03 
CCHP/H 0.45 1.60 0 0.04 
Electrical 

heating 
equipment 

2.30 0.70 0 0.06 

Electric 
refrigerating 
equipment 

2.90 0.60 0 0.06 

Absorption 
refrigerator 

2.50 0.50 0 0.05 

GB 0.75 0.50 0 0.04  

Fig. 6. Prediction values of the demand load.  
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of Cold is a typical cold storage, which needs to maintain a stable low 
temperature inside. When the outdoor temperature is low at night, the 
demand for cold load is lower than the demand during the day. The one- 
day load demand curves for Demand of Electric 1, Demand of Electric 2, 
Demand of Heat 1, Demand of Heat 2, Demand of Cold are shown in 
Fig. 6. 

5.2. Analysis of different bidding strategies 

In order to verify the feasibility of the energy management method 
and bidding strategy in this study, the AR-C strategy proposed in this 
study is compared with ZI-C strategy of random bidding strategy 
without learning mechanism, AA strategy [26] and PA strategy with 
learning mechanism [58]. This section takes the total operating period 
of 24 h and the operating cycle of 1 h as the time slot to conduct the 
double auction and conduct the simulation analysis of these bidding 
strategies. 

5.2.1. Bidding parameters setting 
The bidding at time zero is taken as the initial double auction. We 

assumed that all the energy buyers and sellers in the four bidding stra-
tegies have the same bidding price and reserve price in the first auction. 
The initial bidding price of sellers shall refer to the current selling price 
of electricity, heat and cold in the area where the IES is located, while 
the reserve price is set at a 30% reduction from the initial bidding. And 
the initial bidding price of buyers is set according to the average price of 
local energy purchase, while the reserve price is set at a 30% increase 
from the initial bidding. Due to the existence of the conversion equip-
ment of electrical heating equipment, the heat buyers shall not only 
make a bidding price to the heat power trading platform, but also make a 
bidding to the electric power trading platform according to the con-
version efficiency. The initial bidding data of heat buyers can be referred 
to in Eq. (2) and (3). For the cold buyers, the initial bidding data refers to 
Eq. (4) and (5) by the same way. The initial bidding prices and reserve 
prices of energy buyers and sellers in the multi-energy market are shown 
in Table 2. In addition, according to the actual situation in China, the 
electricity price of distribution networks fluctuates and changes regu-
larly throughout the day can play a role of peak shaving and valley -
filling. The peak power consumption is at 10: 00–14: 00 and 18: 00–20: 
00, whose peak electricity price during this time period is 183.65 
$/MWh. The valley electricity is at 23: 00–6: 00, whose price is 38.37 
$/MWh. The rest of the day is the normal electricity period, whose 
electricity price is 109.22$/MWh. 

It is necessary to charge additional environmental governance costs 
for the energy sellers of fossil energy in the AR-C strategy. The harmful 
substances generated during the operation of the equipment for the 

current energy system are mainly CO2, SO2 and NOX. According to the 
harm grade and processing difficulty, the environmental treatment costs 
for CO2, SO2 and NOX are set as 0.0125$/kg, 0.185$/kg and 0.35$/kg 
respectively. Table 3 shows the pollutant emissions that generate unit 
energy quantity including distribution networks, CCHP and GB, which 
contain fossil energy sources. 

5.2.2. Economic comparison 
Social welfare and allocation efficiency are used as evaluation in-

dexes to analyze the effectiveness and economy of the four bidding 
strategies. Social welfare is the combination of all participants’ eco-
nomic benefit. It is an important performance indicator for the bidding 
strategy to appraise performance. Allocation efficiency is referred to as 
the difference between the social welfare of the bidding strategy and the 
optimal solution. In this case, the optimal solution is the total return of 
competitive equilibrium (SWM), and the transaction price of each 
transaction can be calculated according to Eq. (16). 

The comparison of social welfare for bidding strategies in one day is 
shown in Fig. 7. It can be concluded that the social welfare of the three 
strategies with learning mechanism is significantly higher than the ZI-C 
strategy without learning mechanism. The result is that the learning 
mechanism can adjust the bidding strategy timely in the subsequent 
bidding price according to the previous market conditions, so as to 
obtain more transaction rates. The AA strategy forcibly divides the 
bidding attitude into three categories, and the adjustment means are too 
rigid. The PA strategy has a more flexible learning mechanism than the 
AA strategy so that the social welfare is higher. Because the AR-C 
strategy can not only analyze previous market information, but also 
adjust the reserve price appropriately according to the market infor-
mation, it is superior to the PA strategy. At the same time, the dynamic 
compensation for fossil energy also reduces the price advantage of dis-
tribution networks. It can further improve overall social welfare through 
increasing the profitability of energy sellers within the system, partic-
ularly renewable energy such as WPP and PV. The simulation result 

Table 2 
Initial bidding price and reserve price.  

Trading node Energy 
attributes 

Initial bidding price 
($/MWh) 

Reserve price 
($/MWh) 

WPP Electricity 67.45 47.22 
PV Electricity 70.63 49.44 
CCHP Electricity 51.66 36.16 

Heat 51.66 36.16 
Cold 21.53 15.07 

GB Heat 51.66 36.16 
Demand of 

Electric 1 
Electricity 52.00 67.60 

Demand of 
Electric 2 

Electricity 50.00 65.00 

Demand of Heat 
1 

Heat 52.00 67.60 
Electricity 119.60 155.48 

Demand of Heat 
2 

Heat 50.00 65.00 
Electricity 115.00 149.50 

Demand of Cold Cold 24.00 31.20 
Electricity 69.60 90.48  

Table 3 
Pollutant emissions of unit energy supply.  

Equipment CO2 (kg/MWh) SO2 (kg/MWh) NOx (kg/MWh) 

DN 899.12 75.97 2.21 
CCHP/E 972.41 8.98 2.62 
CCHP/H 776.53 7.17 2.09 
CCHP/C 310.62 2.87 0.84 
GB 788.51 7.28 2.12  

Fig. 7. Social welfare with different bidding strategies.  
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based on one day demonstrates that the AR-C strategy has an obvious 
advantage in social welfare which is 93.7%, 31.3% and 12.9% higher 
than ZI-C strategy, AA strategy and PA strategy respectively. 

The simulation results conclude that the average allocation effi-
ciency of ZI-C, AA, PA and AR-C after 24 auctions are respectively 0.44, 
0.67, 0.74 and 0.85. Fig. 8 shows that the trend of allocation efficiency is 
basically the same as the social welfare. Similarly, comparing with the 
other three strategies, the AR-C strategy is 94.7%, 31.7% and 12.9% 
higher than ZI-C strategy, AA strategy and PA strategy respectively in 
allocation efficiency. The absolute ideal allocation efficiency is equal to 
1, which indicates that all buyers and sellers are bidding transactions 
conducted by linear programming in the double auction. In each auc-
tion, all participants clearly expect to achieve the highest return rather 
than meeting each other’s needs. Therefore, this ideal bidding strategy 
in double auction does not exist in practice, but it can be used as a 
benchmark for economic comparison. The allocation efficiency of ZI-C 
strategy is the lowest and it is irregular fluctuation due to the lack of 
feedback to the market information. In the first few double auctions, the 
allocation efficiency of the other three strategies is slightly higher than 
the ZI-C strategy. The other three strategies have the slightly higher 
efficiency, and they are gradually increased due to the learning mech-
anism of market feedback. After the 20th transaction, the allocation 
efficiency of the AR-C strategy exceeded 0.9 that is gradually closer to 
the ideal situation. 

5.2.3. Environmental comparison 
The efficiency of renewable energy utilization can be improved by 

adding the dynamic compensation. The AR strategy without the 
compensation is simulated. We obtained renewable energy efficiency 
and pollutant emissions, and compared them with the AR-C strategy 
which add compensation based on the cost of polluting emissions from 
fossil fuels. Fig. 9 compares the power sold output of WPP and PV for one 
day in different strategies, and the electricity sales of WPP and PV in the 
AR-C strategy is more than the AR strategy 55.6% and 37.9% respec-
tively. According to the simulation data, adding the dynamic bidding 
compensation increases the utilization rate of renewable energy by 
50.2%. 

Fig. 10 shows the emissions of CO2, SO2 and NOX in one day for the 
two strategies. Because the utilization efficiency of WPP and PV is 
improved by the dynamic bidding compensation, the energy supply -
quantity of CCHP, GB and distribution networks will be reduced corre-
spondingly. Therefore, the pollutant emissions from IES would be 
reduced. According to the simulation data, the emissions of CO2, SO2 
and NOX are reduced by 18.9%, 21.2% and 18.1% respectively due to 
the incentive of renewable energy supply in the AR-C strategy. 

5.2.4. Summary of different bidding strategies 
An experiment scenario conducted on Chinese typical grid- 

connected IES for 24 h is used to verify the effectiveness of the pro-
posed methodology. The AR-C strategy has an obvious advantage in 
social welfare which is 93.7%, 31.3% and 12.9% higher than ZI-C 
strategy, AA strategy and PA strategy respectively. Meanwhile, 
compared with the other three strategies, the AR-C strategy is 94.7%, 
31.7% and 12.9% higher than ZI-C strategy, AA strategy and PA strategy 
respectively in allocation efficiency. 

It is worth noting that the experiment scenario and parameter set-
tings are based on a typical IES of China. However, there is an inter-
national consensus that developing integrated energy systems and multi- 
energy markets can promote the use of renewable energy, expand 
profitability, and enhance environmental protection. Energy markets in 
developed regions such as the United States, Japan and Europe are also 
developing towards diversification of energy supply and distributed 
energy management. Therefore, the experimental background of this 
case is representative to some extent. 

According to the simulation data, the dynamic compensation of the 
presented bidding strategy increases the utilization rate of renewable 
energy by 50.2%. The emissions of CO2, SO2 and NOX are reduced by 
18.9%, 21.2% and 18.1% respectively due to the incentive of renewable 
energy supply. Through these comparisons, it is clear that dynamic 
compensation methods can significantly improve the efficiency of 
renewable energy and play a positive role in reducing pollutant 
emissions. 

Fig. 8. Allocation efficiency with different bidding strategies.  

Fig. 9. Power sold output of WPP and PV with different bidding strategies.  

Fig. 10. Emissions of CO2, SO2 and NOX with different bidding strategies.  
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With the different energy supply equipment of fossil energy and the 
difference of environmental cost management cost in different regions, 
the dynamic bidding compensation Dj will be different. However, the 
efficiency of renewable energy equipment in the energy market will be 
partly motivated by flexible bidding compensation to reduce the impact 
of the energy system on the environment. At the same time, the opera-
tion or regulatory authorities of the energy system will receive increased 
revenue from the bidding compensation, which can be used for renew-
able energy subsidies, environmental governance and other aspects to 
promote the environmentally friendly of the region. 

5.3. Blockchain implementation 

The AR-C strategy is adjusted timely according to real-time market 
information, which has good economic and environmental performance. 
However, the transaction under traditional centralized control will 

increase the operating cost of the transaction center as the user grows. 
Centralized control is vulnerable to be attacked by external hackers, and 
the privacy of users and the security of transactions are not guaranteed. 
Therefore, we try to introduce the blockchain into our bidding strategy, 
making use of its decentralization, security and other advantages, to 
establish decentralized application (DApp) of blockchain can provide 
historical information and conduct real-time transactions. 

We create a DApp named Energy Management System that can be 
used as the basic technical framework for multi-energy trading. This 
DApp is created with the Remix compiler based on the open source 
network of Ethereum. Energy Management System consists of two parts: 
the smart contract and the user interface (UI). The smart contract runs as 
code on the blockchain and is responsible for data interaction, and the UI 
is a front-end page implemented by HTML and JavaScript for users to 
operate on. Each buyer or seller can participate in the real-time energy 
management through simple operations on the UI and implement energy 

(a)Procedure code of smart contracts                            (b) Operation in UI 

Fig. 11. New user creation and classification.  

(a)Procedure code of smart contracts                           (b) Operation in UI 

Fig. 12. Render the trading margin.  

(a)Procedure code of smart contracts                          (b) Operation in UI 

Fig. 13. Energy sellers submit bidding information.  
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agreements automatically in accordance with smart contracts. 
The built DApp is deployed and run on the Ethereum virtual machine 

(EVM), an operating environment of blockchain network. We will 
discuss how to interact data by means of smart contracts and operate the 
system though UI in a step-by-step process as visualized in Figs. 11–15. 
All users can perform the following operations shown below based on 
the DApp.  

(1) Account is created for a new user including energy attribute 
classification. Each new user gets a specific account through 
DApp which is the user’s permanent identity. Fig. 11(a) is the key 
computer code for new users to join the system and energy 
attribute classification. Users register through the UI and can 
choose six identities for the transaction of electricity, heat and 
cold energy respectively seller of electricity, seller of heat, seller 
of cold, buyer of electricity, buyer of heat and buyer of cold as 
shown in Fig. 11(b).  

(2) Users render the necessary trading margin to the platform. 
Margin is the working capital required to maintain the renewal of 
a transaction. It is specifically used for the settlement and per-
formance guarantee of an energy order transaction. As the 
example shown in Fig. 12(a) and (b), each user must deposit a 
transaction currency of 100 in advance. It should be noted that 
the value of trading margin can be set flexibly according to the 
needs of the multi-energy market.  

(3) Users can submit real-time bidding information to the blockchain 
network. In each double auction, users can submit real-time 
bidding information such as price, amount of energy and time 
to the DApp as shown in Fig. 13(a). Taking PV as an example, we 
submit the information to the system between 12:00 and 13:00, 
and can provide a unit electric power source with a bidding price 
of 44 as demonstrated in Fig. 13(b).  

(4) Buyers and sellers could enter the energy trading contract. For 
example, PV and an electric buyer sign a smart contract at 45 per 
point. This will lead to a transaction of PV supplies electricity to 
this customer between 12:00 and 13:00. Fig. 14(a) and (b) 
illustrate the key procedure codes and user interface for energy 
smart contracts.  

(5) After some transactions are completed, the trading data is open 
and transparent. The real-time data processor sends valuable in-
formation to each user in real time. As demonstrated in Fig. 15(a) 
and (b), an energy buyer or seller could extract and utilize all 
trading information completed. 

All the above energy trading processes can be completed automati-
cally through the DApp almost without manual intervention, reducing 
the operating cost of the multi-energy system. More important, trans-
action data is sent in real time and stored in all energy nodes, so that 
each user can master the real-time information and enhance the bidding 
strategy. 

The AR-C strategy proposed in this study is a typical real-time energy 

(a) Procedure code of smart contracts

(b) Operation in UI

Fig. 14. Enter into the energy trading contract.  

L. Wang et al.                                                                                                                                                                                                                                   



Applied Energy 279 (2020) 115866

14

management method. The decentralized network structure of block-
chain technology will enhance the strong timeliness. In summary, the 
benefits of blockchain for participants involved in the multi-energy 
market include but are not limited to the following aspects: Firstly, 
the threshold for energy producers has been lowered by blockchain, 
prompting more energy sellers to join multi-energy market. These sellers 
adjusted their bidding strategies according to the updated real-time in-
formation on DApp to improve the transaction rate and sales revenue. 
Secondly, energy buyers can freely choose the mode of energy use ac-
cording to real-time information on the blockchain network, and pro-
mote the reduction of energy consumption cost. Thirdly, the 
decentralized trust method of blockchain can eliminate the central 
institution or third-party intermediary, which helps the IES to save 
operating costs, avoid energy monopoly and reduce the risks of data 
security and privacy. Finally, the local multi-energy market is 
strengthened by the blockchain technology, which reduces the energy 
consumption of long-distance transportation. Meanwhile, the efficient 
utilization of distributed renewable energy reduces the impact of energy 
system on ecology and environment. 

6. Conclusion 

The study presents a bidding strategy to fill the gap between multi- 
energy market and blockchain technologies. To the best of our knowl-
edge, this method is the first research specifically designed for real-time 
energy management and double auction mechanism in integrated en-
ergy system. The proposed method and its novelties can be summarized 

as following:  

(1) This paper designs three interactive energy trading platforms for 
the multi-energy market, so that the multi-energy buyers and 
sellers can trade independently through the double auction 
mechanism. This energy management mode facilitates seamless 
access to a variety of energy supply and conversion devices, and 
promotes energy instantaneous balances and real-time prices 
update.  

(2) The proposed bidding strategy has adaptive learning ability and 
adjusts the reserve price according to the real-time market in-
formation. Moreover, the bidding strategy has an innovative 
dynamic compensation which can reduce the price advantage of 
fossil energy and increase the local consumption of renewable 
energy. Dynamic compensation which is based on the charac-
teristics of energy systems in different regions has strong flexi-
bility and applicability.  

(3) An experiment scenario conducted on a typical grid-connected 
integrated energy system for 24 h is used to verify the effective-
ness of the proposed methodology. According to the simulation 
data, our bidding strategy has an obvious advantage in social 
welfare and allocation efficiency than existing bidding strategies. 
Moreover, the problem of environmental pollution can be solved 
to a certain extent through dynamic compensation.  

(4) A decentralized application of blockchain is developed to ensure 
the seamless and effective performance of the presented bidding 
strategy, and it can realize real-time energy management and 

(a) Procedure code of smart contracts 

(b) Operation in UI

Fig. 15. Extract the trading information.  
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transaction in practice. This work provides reference for 
comprehensive energy utilization and diversified energy market 
transactions.  

(5) While the system is designed based on a multi-energy market, it is 
also suitable to be used in other energy system such as microgrids 
and virtual power plants. Therefore, the proposed trading model 
is expected to stimulate the energy market vitality and improve 
the energy efficiency worldwide. 

In future work, we will adapt the bidding strategy to be combined 
with the multi-energy system containing some energy storage devices 
that could show its wider applicability. Moreover, we would put more 
effort into the research on the shortcomings of blockchain and try to 
solve the problems of low operating efficiency and high energy con-
sumption on energy blockchain network. Overall, the method presented 
in our study can realize real-time energy management and further 
reduce the environmental pollution while ensuring the multi-energy 
market economy. 
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