
����������
�������

Citation: Zhang, D.; Ma, Y.; Liu, J.;

Jiang, S.; Chen, Y.; Wang, L.; Zhang,

Y.; Li, M. Stochastic Optimization

Method for Energy Storage System

Configuration Considering

Self-Regulation of the State of Charge.

Sustainability 2022, 14, 553. https://

doi.org/10.3390/su14010553

Academic Editor: Tomonobu Senjyu

Received: 15 November 2021

Accepted: 27 December 2021

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Stochastic Optimization Method for Energy Storage System
Configuration Considering Self-Regulation of the
State of Charge
Delong Zhang 1, Yiyi Ma 1, Jinxin Liu 1, Siyu Jiang 1, Yongcong Chen 1, Longze Wang 1, Yan Zhang 2,3

and Meicheng Li 1,*

1 School of New Energy, North China Electric Power University, Beijing 102206, China;
zhangdelong@ncepu.edu.cn (D.Z.); 120212211018@ncepu.edu.cn (Y.M.); 120192211823@ncepu.edu.cn (J.L.);
120202211047@ncepu.edu.cn (S.J.); 120192211901@ncepu.edu.cn (Y.C.); 1182111018@ncepu.edu.cn (L.W.)

2 School of Economics and Management, North China Electric Power University, Beijing 102206, China;
zhangyan8698@ncepu.edu.cn

3 Beijing Key Laboratory of New Energy and Low-Carbon Development, Beijing 102206, China
* Correspondence: mcli@ncepu.edu.cn

Abstract: Photovoltaic (PV) power generation has developed rapidly in recent years. Owing to its
volatility and intermittency, PV power generation has an impact on the power quality and operation
of the power system. To mitigate the impact caused by the PV generation, an energy storage (ES)
system is applied to the PV plants. The capacity configuration and control strategy based on the
stochastic optimization method have become an important research topic. However, the accuracy of
the probability distribution model is insufficient and a stochastic optimization method is rarely used
in a control strategy. In this paper, a stochastic optimization method for the energy storage system
(ESS) configuration considering the self-regulation of the battery state of charge (SoC) is proposed.
Firstly, to reduce the sampling error when typical scenarios of PV power are generated, a time-divided
probability distribution model of the ultra-short-term predicted error of PV power is established. On
this basis, to solve the problem that SoC reaches the threshold frequently, a self-regulation model of
the SoC based on multiple scenarios is established, which can regulate the SoC according to rolling
PV power prediction. A stochastic optimization configuration model of the energy storage system
is constructed, which can reduce the impact of PV uncertainty on the configuration result. Finally,
the proposed stochastic optimization method is validated. The fitting error of the time-divided
probability distribution model is 15.61% lower than that of the t-distribution. The expected revenue
of the optimal configuration in this paper is 8.86% higher than the scheme with a fixed probability
distribution model, and 16.87% higher than without considering the stochastic optimization method.

Keywords: ultra-short-term prediction; self-regulation of state of charge; energy storage system;
stochastic optimization; multiple scenarios

1. Introduction

In the context of energy and environmental challenges becoming one of the world’s
key problems, renewable energy is receiving an increasing amount of attention and re-
search [1]. The development of renewable energy is of great significance to the world’s
sustainability. Photovoltaic (PV) power generation is an essential component of renewable
energy generation that has grown quickly in recent years [2,3]. Its application contributes
a lot to the sustainability of energy development and utilization. PV is also an important
way to reduce greenhouse gas emissions.

PV power generation is influenced by weather conditions and is characterized by
volatility and intermittency. As the penetration of PV power generation increases, it will
bring new challenges to the power grid, such as PV consumption, power quality, and so
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on [4,5]. As a device with flexible regulation capability, electrochemical energy storage (ES)
serves an important supporting function for wind and PV power, and has been employed
more frequently in recent years in the wind farms, the PV stations, and the customer side.

The application of energy storage also has many restrictions, and the cost is one of the
main factors impeding the application of electrochemical energy storage [6,7]. Therefore, in
the application of the PV-ES system, how to choose the appropriate storage capacity has
become a major issue of research. Many academics have studied the optimal configuration
of energy storage. The energy storage system (ESS) serves a variety of purposes, including
smoothing the PV power fluctuations [8,9]. The literature [8] takes the maximum benefit
as the goal and investigates the restriction relationship between grid frequency regulation
and energy storage to optimize the configuration of energy storage to produce the optimal
smoothing effect. The literature [9] takes the minimum active power fluctuation as the
objective function, and proposes an optimization model for the charging and discharging
of the energy storage unit of the wind-PV combined system. In literature [10], the statistical
methodology was used to optimize the configuration of the energy storage system to
smooth out the PV power fluctuations. In literature [11], an optimal configuration of
a hybrid energy storage system for smoothing fluctuations of PV in a microgrid was
carried out.

However, the above types of research do not consider the PV prediction in the process
of smoothing PV power fluctuations and the calculation time of the control strategy is
lengthy [11]. Research of control strategies for the PV-ES system and the configuration
of energy storage systems based on the prediction of renewable energy or load is critical
to improving the system’s economy [12]. In literature [13], the energy balancing using
charge/discharge storage control based on the load prediction is investigated. The effect
is related to the predicted accuracy. As a result, this paper takes PV ultra-short-term
prediction into account to provide a basis for generating typical scenarios. The scenario in
this paper refers to the power curve created by sampling the probability distribution model.
In literature [14], the dynamic programming is used to solve the energy management
problem in the smart islands. The disadvantage of dynamic programming is that it does
not have a unified model. In the paper, the probability distribution models and scenarios
in each stage or cycle of this paper are different.

Furthermore, different charging and discharging strategies of the energy storage
system will affect the life of the energy storage batteries and the configuration results. A
battery dynamic model is proposed in literature [15], while the cycle life model is not
investigated. The relationship between the cycle life and discharging depth are important
to evaluate the battery degradation. In literature [16], the “rain flow counting” algorithm is
used to investigate the impact of PV fluctuation on the energy storage cycle-life. Compared
to used electric vehicle batteries [17] in a PV-ES system, a model that considers battery
degradation will not only improve the overall system economics, but will also minimize
the degradation rate of energy storage batteries. For the state of charge mode, the Volterra
model is used in literature [13,18]. Instead of the integral form of the Volterra model, the
linear discrete model is used in this paper.

The above literature employs deterministic methods to investigate the optimal con-
figuration of energy storage systems. However, the uncertainty of PV power generation
will affect the optimization results [19]. A stochastic optimization approach based on multi-
scenario theory is important to reduce the impact of uncertainty [20]. The method has been
applied to solve problems such as finding the optimal location of wind power transmission
channel drop-off sites and stochastic unit combinations [20], microgrid operation [21],
and the integrated energy system operation [22]. The advantage of a multi-scenario based
method that is the expected value method is handling stochastic optimization problem more
easily than chance-constrained programming. In literature [23], the stochastic optimization
of integrated energy systems was investigated based on a multi-scenario stochastic opti-
mization approach, taking into account the uncertainty of wind and solar energy resources.
The literature [24] investigated the multi-objective stochastic optimal operation of inte-
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grated energy systems based on a multi-scenario approach, and the results revealed that the
approach outperformed the deterministic approach. The probability distribution models
used in the aforementioned literature for generating scenarios are all single probability
distribution models, while the uniform model for sampling at different periods will result
in high sampling errors, affecting the final optimization results.

In literature [25], a typical normal fuzzy cloud model is used to handle the uncertainty
of the wind power. By contrast with the wind power, the PV power has obvious periodicity.
The power in the morning and noon are different, apparently. Therefore, building the
time-divided probability distribution model is necessary, which is adopted in this paper.

To solve the aforementioned problems, this paper proposes a stochastic optimization
method for energy storage systems that considers the battery state of charge self-regulation.
The following are the key findings and contributions of this paper:

(1) The time-divided probability distribution models for the ultra-short-term predicted
error of PV power are established. Compared with the model in [21,25], this model
can handle the random variable with different distribution characteristics in different
periods. Several typical scenarios of PV power generation are generated based on this
model. The sampling error is smaller and the statistical characteristics of sampling
data are more consistent with the actual data.

(2) This paper constructs an expected value model for the SoC self-regulation control
strategy and the optimal configuration model, which takes into account the rolling
power prediction and the uncertainty of PV power. The revenue of operation and
configuration are higher than other methods.

(3) The SoC self-regulation model and optimization configuration model considered
the cycle life degradation of the battery. This consideration can delay the cycle life
degradation and reduce degradation costs by regulating the battery’s SoC. The results
also reveal that the revenue is improved.

The rest of the paper are arranged as follows: Section 2 explains the framework
of the ESS optimization configuration method. Section 3 introduces the ultra-short-term
predicted error scenarios. Section 4 introduces the stochastic optimization method. Section 5
introduces the results and analysis. The conclusion of this paper is given in Section 6.

2. Framework of the Energy Storage System (ESS) Optimization Configuration
Method
2.1. System Structure of Photovoltaic-Energy Storage (PV-ES) Combined System

To have an intuitive cognition on the research object. The PV-ES combined system is
introduced in the section. Figure 1 depicts the structure of the PV-ES combined system,
which combines the PV system and the energy storage system in series and parallel with a
number of sub-systems, respectively. PV power can be transmitted to the grid or ESS in a
PV-ES combined system. The ESS absorbs the power from the PV system when charging
and transmits the power to the grid when discharging. The power transmitted to the grid
from the PV-ES combined system is:

PPV−ES,t = PPV,t + PES,t (1)

where, PPV,t is the PV power, PES,t is the storage charging and discharging power. The
charging power is negative and the discharging power is positive.

The effect of the energy storage system is to make the grid-connected power of PV
plants be consistent with the dispatch center’s planned power. In this work, the maximum
power output model is used as the basis for the combined PV-ES power plants. The
maximum output mode refers to the fact that the dispatching power is consistent with the
predicted power reported by the PV plant.
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Figure 1. Structure of photovoltaic-energy storage (PV-ES) combined system. (n1 and n2 are number
of series and parallel PV array; m1 and m2 are number of series and parallel battery.)

2.2. Framework for Stochastic Optimization Configuration Method

This work proposes a stochastic optimization method for the energy storage system
configuration that considers the self-regulation of the battery state of charge (SoC). The
block diagram is shown in Figure 2 and is divided into two main parts.

Figure 2. Block diagram of the optimization configuration method.
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(1) The typical scenario generation method for the ultra-short-term predicted errors of PV
power presented in the first part. This part serves as the foundation for the stochastic
optimization of energy storage. The purpose of this part is to use several typical
scenarios of the ultra-short-term prediction as inputs to provide a reference for the
charging and discharging of the energy storage system and to regulate the state of
charge. In this part, the time-divided probability distribution models of ultra-short-
term predicted error for each sampling moment are established. Then, by sampling
each distribution model and connecting the sampled values of each moment into a
power curve as a scenario, a large number of scenarios are created. Several typical
scenarios and their probability of occurrence are obtained by scenario reduction.

(2) The second part is the stochastic optimization method for energy storage systems.
Firstly, a state of charge self-regulation model is proposed, and the typical scenarios
are taken as inputs of the model to calculate the expected value of SoC in the prediction
cycle and updated at each moment. Secondly, an optimal configuration model of the
energy storage system is developed, which is based on the SoC self-regulation outcome
and takes into account the investment cost and the lifetime of the energy storage.
Finally, the model is solved to obtain the optimal results for the ESS configuration.

3. Ultra-Short-Term Predicted Error Scenarios of PV Power

Stochastic programming is a branch of programming theory that can be used to investi-
gate decision problems containing uncertainty factors. This paper studies the optimization
configuration method for energy storage systems based on the expected value model in
stochastic programming theory. The main principle is that the uncertainty problem is
transformed into a deterministic problem to be solved by using several typical scenarios
and their corresponding probabilities of occurrence as inputs to the configuration model. In
this section, the created method of typical scenarios of ultra-short-term predicted errors is
investigated. To create a large number of scenarios by sampling, a probability distribution
model of PV power predicted errors must be built. Then, many typical scenarios are
obtained by reducing a large number of scenarios.

3.1. Time-Divided Probability Distribution Models

In this paper, the probability distribution model is applied to study the stochastic
planning of PV-ES power stations. If a uniform model is created for the probability distri-
bution of predicted errors at all times, the sampling data will have too large an error. Take
PV power as an example, the PV power is high in the noon but low in the morning and
evening and its predicted error is not the same. However, when sampling a uniform model,
the sampling value at 7:00 may be identical to the sampling value at 12:00. Therefore, it
is necessary to build the probability distribution models of the ultra-short-term predicted
error for different periods.

For the ultra-short-term prediction of PV power generation, the prediction cycle is the
next 4 h with a sampling time of 15 min and updated every 15 min. The prediction cycle
is also the SoC self-regulating cycle. The rolling prediction diagram is shown in Figure 3.
Unlike the day-ahead prediction, there are several ultra-short-term prediction cycles per
day, and the predicted error of PV power at each moment of each cycle obeys different
probability distributions, i.e., each cycle has 16 probability distribution models.
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Figure 3. Rolling predicted diagram.

In this paper, non-parametric kernel density estimation (NPKDE) is used to model the
time-divided probability distribution of the ultra-short-term predicted errors of PV power.
Assuming x1, x2, . . . , xn (i.e., ultra-short-term predicted errors) are n sample points with
the independent identical distribution F, its probability density function is f. The kernel
density estimation is expressed as follows:

f̂l(x) =
1

nhl

n

∑
i=1

K
(

x− xi
hl

)
(2)

where hl is the bandwidth at the l-th moment, n is the number of samples, and K is the
kernel function.

K(u) =
1√
2π

e−
u2
2 (3)

Based on the above non-parametric kernel density estimation, probability distributions
can be modeled independently for each of the 16 moments in a number of prediction cycles
throughout the day.

3.2. Scenario Generation and Reduction

Based on the established probability distribution model, scenarios of ultra-short-term
predicted errors can be generated by sampling, where the so-called scenario is a predicted
error curve consisting of 16 sampled values.

(1) Scenario generation

Take time t as an example, the probability distribution models of t + 1 ∼ t + 16 are
sampled to generate scenarios. A large number of initial scenarios are created after N times
of sampling.

(2) Scenario reduction

If large-scale scenarios are directly substituted into the optimization model, the com-
putation time will be very long, which is not only affect the system’s ability to respond
to scheduling commands in time, but also make finding a compromise solution among a
large number of scenarios impossible. The principle of stochastic optimization based on
multiple scenarios is to transform an uncertain problem into a deterministic one. Large-
scale scenarios are reduced to several typical scenarios, from which their corresponding
probabilities can be calculated. Backward elimination [26] and fast forward selection [27]
are two scenario reduction methods that are outside the topic of this work and will not be
discussed in depth in this section.
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After scenario reduction, k typical scenarios of PV predicted errors can be created. The
following scenarios can be obtained using them plus the ultra-short-term predicted PV
power P̂PV,t+1, P̂PV,t+2, . . . , P̂PV,t+16:

P̂PV,t+1 + Pe,1,t+1, P̂PV,t+2 + Pe,1,t+2, . . . , P̂PV,t+16 + Pe,1,t+16
P̂PV,t+1 + Pe,2,t+1, P̂PV,t+2 + Pe,2,t+2, . . . , P̂PV,t+16 + Pe,2,t+16
. . .
P̂PV,t+1 + Pe,k,t+1, P̂PV,t+2 + Pe,k,t+2, . . . , P̂PV,t+16 + Pe,k,t+16

(4)

These scenarios have the probabilities of occurrence of ξ1, ξ2, . . . , ξk. P̂PV,t represents
the predicted value of PV power at the time t, Pe,i,t represents the predicted error at the
time t in the i-th scenario of PV, and ξi represents the probability of occurrence of the
i-th scenario.

4. Stochastic Optimization Method for Energy Storage System

Due to weather conditions, PV power is volatile and intermittent, and this uncertainty
might have an impact on the optimal configuration of the energy storage system, causing
the PV-ES combined system to fail to operate under optimal conditions. We built the PV’s
probability distribution model in Section 2 based on the principles of statistics. The large-
scale scenarios with uncertainty are created by sampling the probability distribution model.
The PV’s large-scale scenarios are reduced to several typical discrete scenarios, converting a
complex uncertainty optimization problem into many deterministic optimization problems.
Then the several typical discrete scenarios are taken as inputs of the expected value model.
The expected value model is a branch of stochastic optimization methods that is based
on typical scenarios and their probabilities of occurrence. Stochastic optimization of
energy storage systems can reduce the impact of the uncertainty of PV on the optimal
configuration results, improve the efficiency of the storage system utilization, and reduce
the PV abandonment rate.

By sampling and combining the ultra-short-term probability distribution models
established above for PV power generation, a large number of PV power generation
scenarios can be generated and then reduced to a small number of representative typical
scenarios. The operation of the PV-ES combined system is based on these typical ultra-
short-term predicted scenarios. In this section, a self-regulating model for the state of
charge of the energy storage battery based on multiple scenarios is constructed. The
charge and discharge power of the energy storage system are calculated according to the
predicted values of PV power during the ultra-short-term prediction cycle. The objective is
to maximize the expected interest of the PV-ES combined system, and the state of charge
of the battery is regulated according to the charge and discharge power. Based on the
operation results of the PV-ES system, a stochastic optimal configuration model of the
energy storage system based on multiple scenarios is established.

4.1. State of Charge Self-Regulation Model

In Section 2, the ultra-short-term predicted error scenario for PV power is considered,
with the goal of applying it to this section of the state of charge self-regulation model,
i.e., the control strategy of the energy storage system. By regulating the SoC for a short
period in the future, the battery’s problems caused by a shortage of energy can be mitigated.
By implementing this control strategy at every moment, the effect of postponing the
degradation of the battery’s life and improving the overall system economy is achieved.

4.1.1. Objective Function

The revenue of the PV-ES combined system is equal to the revenue of selling electricity
to the grid minus the cost of degradation of the batteries and the cost of penalties imposed
on the plant.

max f = f s − f D − f p (5)
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where, f s is the revenue of selling electricity to the grid, f D is the cost of degradation of the
batteries, f p is the cost of penalties imposed on the plant.

(1) Revenue of selling electricity to the grid

This section establishes an expected value model for the revenue of selling power,
which is the sum of the revenue of selling power of each typical scenario multiplied by the
probability of occurrence.

f s =
k
∑

i=1
ξi

τ

∑
t=1

cs,t P̂PV_ES,i,t

=
k
∑

i=1
ξi

τ

∑
t=1

cs,t
(

P̂PV,t + Pe,i,t + P̂ES,i,t
)
∆t

(6)

where, ξi is the scenario’s occurrence probabilities, cs,t is the electricity price of selling
power to the grid by the PV-ES combined system, P̂PV_ES,i,t is the predicted power of the
PV-ES combined system, P̂ES,i,t is the charging and discharging power of the ES during
the prediction cycle, k is the number of scenario, and τ is the combination of the current
moment and the prediction cycle, that is 17 sampling times.

(2) Cost of battery’s degradation

Each charge and discharge of the battery will cause degradation in the cycle life. The
expected value of the cost of degradation is modeled as:

f D = CEEES,N

k

∑
i=1

ξiλ̂ τ (7)

where CE is the unit cost of the energy storage battery, EES,N is the rated capacity of the
energy storage system and λ̂ τ is the cycle life degradation rate of the battery over the
predicted period τ.

(3) Penalty cost for PV-ES system

The PV-ES system is grid penalized by the grid company when the generated power
does not meet the grid’s dispatch instructions. When the power generated by the station
exceeds the grid’s dispatch power, it can be consumed by an active power consumption
device. The expected value of the penalty cost is modeled as:

f p =
k

∑
i=1

ξi

τ

∑
t=1

fp,t (8)

fp,t =

{
cp,t

(
Pre f ,t − P̂PV_ES,t

)
∆t, P̂PV_ES,t < Pre f ,t

0, P̂PV_ES,t ≥ Pre f ,t
(9)

where, fp,t is the penalty cost at time t, cp,t is the penalty cost per unit of power, Pre f ,t is the
reference value that is the dispatched power from the grid dispatch center.

4.1.2. Operation Constraints

The following constraints need to be met during the operation of a PV-ES combined system.

(1) Charging and discharging power constraints of ESS

The converter of the energy storage system has a rated power. In this paper, the rated
power is assumed as the maximum charging and discharging power. The charging and
discharging power should be bigger than the negative rated power and smaller than the
positive rated power. The constraint can be expressed as:

− PES,N ≤ P̂ES,t ≤ PES,N (10)
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The charging power of ESS should be smaller than the PV power.

P̂ES,t ≤ PPV,t (11)

(2) SoC constraints of battery

The SoC of the battery should be bigger than the minimum SoC and smaller than
the maximum SoC. The calculation equation of the SoC is shown in Equation (12). The
calculation equation is the linear discrete model of the Volterra model in [18], which
we made some necessary changes. Owing to the difference between the charging and
discharging process, the calculation equations are different.

SoCmin ≤ SoĈt ≤ SoCmax (12)

SoĈt+1 =

 SoĈt −
ηch P̂ES,t∆t

EES,N
, Charging, PES,t < 0

SoĈt −
P̂ES,t∆t

ηdischEES,N
, Discharging, PES,t > 0

(13)

where, PES,N is the rated power of the converter, SoĈt are the SoC of the battery,SOCmin
and SOCmax are the minimum and maximum SoC of the battery, ηch and ηdisch are charging
and discharging efficiency respectively.

In this section, the unknown variables are P̂ES,i,t, in which t represents the current
moment and the prediction cycle, that is 17 sampling times. The feasible region of P̂ES,i,t is
defined by Equations (10)–(13).

4.1.3. Battery Cycle Life Degradation Model

The role of energy storage in a PV-ES system is to cooperate with PV power generation
in order to stay in line with the dispatching power. However, the energy storage and state
of charge may change at any time throughout the mediation process. When energy storage
needs to discharge, the energy storage may appear to be undercharged, or when energy
storage needs to charge, the state of charge has reached its maximum allowable range.

The depth of charge and discharge, ambient temperature, and many other factors will
all affect the battery’s cycle life. For the depth of charge and discharge, as the depth of
charge and discharge grows, the battery’s cycle life will be lowered. This paper adopts the
lead-acid battery life model in [14,28], and the relationship between battery cycle life and
depth of discharge is:

LB = −3278D4 − 5D3 + 12, 823D2 − 14, 122D + 5112 (14)

In the literature [14,28], the number of charges and discharges at different depths was
equated to the number of full charges and discharges using the rain flow counting method.
This was used to estimate the battery’s cycle life. In the i-th cycle, the number of times that
the battery is charged and discharged once equivalent to a full charge and discharge is:

LB,eq,i =
LB(DN)

LB(Di)
(15)

The degradation rate of the battery’s cycle life is:

λn = LB,eq/LB(DN)× 100%

=

(
n
∑

i=1

LB(DN)
LB(Di)

)
/LB(DN) × 100% (16)

where, D is the discharged depth of the battery, where the discharged depth of the battery is
determined by the rain flow counting method in literatures [14,28] and will not be repeated
in this paper.

LB is the number of cycle.
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DN = 1 means the battery is fully discharged, Di is the discharged depth of the i-th
cycle of the battery, and LB,eq is the total number of equivalent battery cycles.

When λn = 100%, the battery reaches retirement condition.

4.2. Optimization Configuration Model of Energy Storage System

The optimization configuration objective is to minimize the cost or maximize the
revenue. The optimization objective function is the revenue of selling electricity minus the
investment cost of the energy storage system, the cost of energy storage battery degradation
and the penalty cost.

maxF = Fs − Finv − FD − Fp (17)

where, Fs is the revenue of selling electricity from PV-ES combined system to the grid of one
day, Finv the investment cost converted to one-day, FD is the cost of cyclic life degradation
loss of batteries of 1 day, Fp is the penalty cost of 1 day.

The energy storage system cost consists of the battery’s cost and converter’s cost. The
expected value model of the investment cost converted to 1 day is:

Finv =
I

∑
i=1

ξi(CPPES,N,i + CEEES,N,i)/γ (18)

where, the γ is conversion coefficient that converters the whole investment cost to 1-day
cost. PES,N,i and EES,N,i are the rated power and energy of the ESS.

In the SoC self-regulation model described above, the scenario is the power curve of
PV generation over a predicted period, which is updated on a rolling prediction at each
moment. The energy storage system optimal configuration model is different, in that the
scenario is a power curve made up of the results of the SoC self-regulation.

The revenue of selling electricity from PV-ES combined system to the grid is:

Fs =
I

∑
i=1

ξi
T
∑

t=1
cs,tPPV_ES,t,i∆t

=
I

∑
i=1

ξi
T
∑

t=1
cs,t(PPV,t,i + PES,t,i)∆t

(19)

where, cs,t is the electricity price of selling power to the grid by the PV-ES combined system,
PPV_ES,t is the output power of the PV-ES combined system, and PES,t is the charge and
discharge power of the energy storage.

The cost of cyclic life degradation of batteries is:

FD =
I

∑
i=1

ξi(CEEES,N,iλT) (20)

where, CE is the unit cost of the energy storage battery, EES,N,i is the rated capacity of the
energy storage system and λT is the cycle life degradation rate of battery over time T.

The penalty cost for the PV-ES system is modeled as:

Fp =
I

∑
i=1

ξi

T

∑
t=1

Fp,t,i (21)

Fp,t =

{
cp,t

(
Pre f ,t − PPV_ES,t

)
∆t, PPV_ES,t < Pre f ,t

0, PPV_ES,t ≥ Pre f ,t
(22)

where, cp,t is the unit penalty cost, Pre f ,t is the dispatched grid-connected power of the
PV-ES (reference value).

The above optimization model is still subject to the constraints in Section 4.1.2. In this
section, the unknown variables are PES,i,t, in which t represents the sampling times of the
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whole day. The feasible region of PES,i,t is defined by the Equations (10)–(13). Furthermore,
it is assumed in this paper that the energy storage batteries are charged and discharged
with equal energy throughout 1 day, thus maintaining the same initial state of the storage
batteries each day. This paper solves stochastic optimization models for energy storage
systems using the genetic algorithm (GA). Its theory and steps are very well developed
and they are not included in this paper.

5. The Results and Analysis

This paper uses the data of the generation power and ultra-short-term predicted power
of a PV station in Qinghai province, China for the analysis. The station’s installed capacity
is 9 MW. The analysis is divided into two parts. The first part analyzes and compares the
time-divided probability distribution models of ultra-short-term predicted errors based on
actual data. The second part analyzes the state of charge self-regulation strategy and the
optimal configuration results of the energy storage system.

5.1. Analysis of Ultra-Short-Term PV Predicted Error Scenarios

This section first analyses the probability distribution model for the ultra-short-term
predicted error of PV power in Section 2.1. The MATLAB 9.4 (Natick, MA, USA) is used
in this paper. In MATLAB R2018a, the code is edited in order to calculate and analyze.
As shown in Figure 4, the probability distribution models for two different periods are
illustrated. The histogram of the original data is shown by the blue bar, which corresponds
to the frequency on the left vertical axis. The probability density distribution curve fitted to
the original data is shown by the red curve, which corresponds to the probability density
on the right vertical axis.

After modeling the predicted errors for 9:00 and 10:00, the probability distribution
models for the two periods in Figure 4a,b are clearly different. Furthermore, for each period,
the fitting effect of the normal distribution is the least, the t-distributions and kernel density
distributions have similar fitting effect. The root means square error (RMSE) of the fitting
probability distribution curve for the t-distribution is 15.61% higher than that of the kernel
density distribution. This proves that the fitting effect of NPKDE is better than the other
two models.

Table 1 shows the bandwidth of kernel density distributions of the predicted errors
at different times within a prediction cycle. As can be seen in the table, the bandwidth
values for two adjacent periods in each row are similar, and the bandwidth values for
longer intervals are more different, which is consistent with the qualitative analysis of the
probability distribution model in Section 2.1.

Scenarios of the PV power predicted errors in the predicted period can be obtained
by sampling the probability distribution models. The generated scenarios are statistically
significant only if the number of scenarios is sufficiently large. However, when the number
of the scenarios is too large, the calculation time will be too long, which adversely affects
the scheduling of the PV-ES combined system. Therefore, a scenario reduction method
is needed to reduce the large-scale scenarios to a few representative scenarios, to trans-
form the uncertainty problem into several deterministic problems. Taking the predicted
period of 9:00–12:45 as an example, Figure 5 depicts several typical PV power scenarios
after the reduction, and their corresponding probabilities are 45.72%, 21.71%, 22.70% and
9.87% respectively.

Table 1. Bandwidth of kernel density distribution of different times.

Time 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45
Bandwidth 0.0070 0.0084 0.0112 0.0122 0.0134 0.0139 0.0156 0.0165

Time 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45
Bandwidth 0.0112 0.0128 0.0139 0.0173 0.0151 0.0176 0.0187 0.0220
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Figure 4. Distribution of ultra-short-term predicted error of PV power. (a) 9:00. (b) 10:00.
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Figure 5. PV power scenarios.

5.2. Stochastic Optimization Method Analysis
5.2.1. State of Charge (SoC) Self-Regulation Analysis

This section analyzes the dynamic self-regulation of the SoC based on a multi-scenario
approach. The basis is the typical scenarios of PV power in a future predicted cycle
(16 sampling points). The four typical scenarios are used as the input of the SoC self-
regulation model in Section 3.1. We assume that the rated power and capacity of ESS are
450 kW and 1800 kWh, respectively, the initial value of the SoC is 0.5, and the range of
the SoC is [0.1, 0.9]. The GA in the optimization tool of MATLAB R2018a is used in this
paper to calculate. The Table 2 shows the PV module’s parameters. The currency used
in the paper is the Chinese yuan (CNY, ¥). For this kind of PV cell, it is about 550 ¥. For
the ESS, we used the Lead-acid battery as the case in this paper. The battery’s unit cost is
600 ¥/kWh. The converter’s unit cost is 1000 ¥/kWh.

Table 2. The PV module’s parameters.

Parameter Value

Maximum power (Pmax) 310 W
Open circuit voltage (Voc) 45 V

Maximum power voltage (Vmp) 37 V
Short circuit current (Isc) 8.8 A

Maximum power current (Imp) 8.38 A
Maximum series fuse rating 20 A

Figures 6 and 7 depict the output power of the PV-ES system and SoC of the battery
under different scenarios, respectively. Scenario 1 is similar to the predicted scenario, with
low charge and discharge power and SoC staying around 0.5. The other three scenarios
have power levels that range between above and below the predicted power (the power
commanded by the dispatch center). The energy storage system will charge or discharge
accordingly, and the SoC value will increase or decrease correspondingly. In practice, this
process is repeated at each sampling moment, thus achieving the effect of rolling SoC
self-regulation.
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Figure 6. Output power of energy storage system under different scenarios.

Figure 7. SoC of energy storage system under different scenarios.

Over this predicted period, the revenue of the PV-ES combined system is calculated as
shown in Table 3, and the unit is the yuan (¥). The revenues of three scenario’s schemes
are compared. Scheme 1: the scenarios are generated by the probability distribution
models of PV power predicted error developed in this paper. Scheme 2: the scenarios are
generated by the error probability distribution model obeying a normal distribution N
(0.0031, 0.0436). Scheme 3: there is only one deterministic scenario that is assumed as the
PV’s predicted power.
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Table 3. Operation income of PV-ES combined power station.

Scheme 1 (¥) Scheme 2 (¥)

Expected value 13,617.39 12,854.77
Scenario 1 13,405.93 14,310.93
Scenario 2 13,256.27 12,217.82
Scenario 3 14,118.52 10,887.97
Scenario 4 14,238.66 12,034.02

In the two schemes, although the expected value of revenue obtained from the expected
value model is not the highest, the model takes into account predicted information of
different scenarios. For the PV-ES station, it is beneficial to predict the SoC more accurately
in a future cycle. For the grid, the accuracy of the output power of the PV-ES power station
can ensure the safety and stability of the grid operation.

Without considering stochastic optimization based on multiple typical scenarios, the
operational revenue using the deterministic optimization model is 12,023.32 yuan, in which
only the predicted power curve is used as the deterministic scenario. The expected revenue
of the PV-ES system for Scheme 1 is 5.9% higher than that of Scheme 2 and 13.26% higher
than that of Scheme 3, which demonstrates the advantages of the scenario generation
approach in this paper. The revenue difference between each scenario of Scheme 1 is also
smaller, and Scheme 1 is also closer to the actual operating case of 13,102.26 yuan. The
operating results indicate that the SoC self-regulation effect of Scheme 1 is better, and the
SoC self-regulation based on the stochastic optimization method in this paper is the best.

5.2.2. Analysis of the Optimization Configuration

The results of the SoC self-regulation were obtained by simulating the operation of the
PV-ES combined system over a predicted cycle in Section 5.2.1. The operation of the PV-ES
combined system is based on rolling repetition of the above calculations, and the stochastic
optimal configuration of the energy storage system takes into account a longer time scale
(1 year) to ensure configuration accuracy. The self-regulation results of the SoC will vary at
different predicted periods. The extreme examples of SoC exceeding the limitation may
occur, but the probability of such examples will be reduced by the control strategy proposed
in this paper. The cycle life degradation cost of the energy storage battery is one part of the
objective function. By applying the SoC self-regulation control strategy at each cycle, the
cycle life degradation cost will be reduced, resulting in an economic improvement of the
PV-ES system.

This section analyses the results of the optimal configuration of the energy storage
system. Figure 8 shows the process of solving the optimal model, where the cost of the
vertical axes is the negative of the revenue. The number of iterations varies for each scenario,
but they all finally settle to a fixed value. According to 10 times calculations, the average
iteration times for four scenarios are 3.288 s, 7.839 s, 4.252 s and 5.440 s, respectively. The
battery’s cycle life for four scenarios are 3125, 2941, 3225 and 2125 cycles, respectively. The
expected value of battery’s cycle life is 3107 cycles. The final revenues are shown in Table 4,
where the revenues of Scheme 1 are all higher than those of Scheme 2. It can be observed
that using the scenarios generated by the method of this paper as the basis can obtain better
configuration results.

Table 4. Comprehensive income of optical storage station.

Scheme 1 (¥) Scheme 2 (¥)

Expected value 42,592.40 39,127.04
Scenario 1 42,865.74 39,415.28
Scenario 2 37,509.72 35,656.07
Scenario 3 44,876.43 42,031.51
Scenario 4 43,063.27 38,746.59
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Figure 8. Solution process of optimal configuration of energy storage under different scenarios.

Without considering the stochastic optimization method, the revenue obtained with
deterministic optimization Scheme 3 is 36,443.21 yuan. The expected revenue of Scheme 1 is
8.86% higher than that of Scheme 2, and 16.87% higher than that of Scheme 3, indicating that
the economics of the proposed method in this paper is better. The optimal configurations
of the energy storage system for the Scheme 1 and Scheme 2 are PES,N = 318.72 kW,
EES,N = 752.67 kWh, and PES,N = 2162.19 kW, EES,N = 6758.21 kWh respectively. The
stochastic optimization method proposed in this paper can be used to maximize the benefit
of PV-ES combines system and minimize the energy storage power and capacity.

The sensitivity of revenue to the change of battery cost is analyzed, as shown in
Figure 9. Although it is not linear owing to the GA’s limitation, we can see that the
overall revenue decreases with the increase of unit cost. With the development of battery
technology, the cost of a battery will continue to decline. The sensitivity analysis can also
provide a reference for the optimal configuration of optical storage in the future.

Figure 9. The expected revenue in a different battery’s unit cost.
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6. Conclusions

This paper investigated the stochastic optimization configuration method for the
energy storage system in a PV-ES combined system. The time-divided probability distri-
bution models of the ultra-short-term predicted error of PV power are proposed in this
paper, which makes the sampling data more similar to the real data’s statistical pattern
features. Based on the multi-scenario stochastic optimization method, an energy storage
system configuration model that considers the SoC self-regulation is established. The main
conclusions of this paper are as follows:

(1) The fitting error of the proposed time-divided probability distribution model based
on the non-parametric kernel density estimation is 15.61% lower than that of the
t-distribution. The bandwidth of the distributions obeyed by different periods differed
and the fitting effect was more in line with the statistical features of the original data.

(2) The ultra-short-term prediction scenarios are different, which makes the operation of
the energy storage system and the SoC curves different. Scenarios generated based on
different schemes affect the revenue of the self-regulating model of SoC. The stochastic
optimization method proposed in this paper has 5.9% higher revenue than Scheme 2
and 13.26% higher than the deterministic method. This shows the superiority of SoC
self-regulation control strategy.

(3) The optimal configuration result is different for different scenarios. The expected
revenue of the optimal configuration model based on the stochastic optimization
method proposed in this paper is 8.86% higher than that of Scheme 2, and 16.87%
higher than without considering the stochastic optimization method. This proves
the proposed stochastic optimization configuration method is of great significance to
improve the economy.

The scenario generation method is the basis of stochastic optimization. The accuracy of
the generated scenario may affect the results of stochastic optimization. This paper studied
the time-divided probability distribution model, which improves the effect of stochastic
optimization. In the future, it is necessary to continue to study the accuracy of the probabil-
ity distribution model and the impact of their time correlation on stochastic optimization.
The research in this paper can supply theory and application support to the operation and
planning of PV-ES combined power stations. In future research, we will consider many
different types of energy storage batteries and wind-PV-ES combined systems.
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Nomenclature and Variable

PV Photovoltaic
ES Energy storage
SoC State of charge
ESS Energy storage system
PPV,t PV power
PES,t Storage charging and discharging power
k Number of scenario
h Bandwidth
n Number of samples
t Time step
ξ Scenario’s occurrence probability
P̂PV,t Predicted value of PV power at time t
Pe,i,t Predicted error at the time t
f s Tevenue of selling electricity to the grid
f D Cost of degradation of the batteries
f p Cost of penalties imposed on the plant
cs,t Electricity price of selling power to the grid by the PV-ES combined system
P̂PV_ES,i,t Predicted power of the PV-ES combined system
P̂ES,i,t Charging and discharging power of the ES during the prediction cycle
τ Combination of the current moment and the prediction cycle
CE Unit cost of the energy storage battery
EES,N Rated capacity of the energy storage system
λ̂ τ Cycle life degradation rate of the battery over the predicted period τ

fp,t Penalty cost at time t
cp,t Penalty cost per unit of power
Pre f ,t Reference value
PES,N Rated power of the converter
SoCt SoC of the battery
SOCmin Minimum SoC of the battery
SOCmax Maximum SoC of the battery
ηch Charging efficiency
ηdisch Discharging efficiency
Di Discharged depth of the i-th cycle of the battery
LB Number of cycle
LB,eq Total number of equivalent battery cycles
Fs Revenue of selling electricity from PV-ES Combined system to the grid of one day
Finv Investment cost converted to one-day
FD Cost of cyclic life degradation loss of batteries of one day
Fp Penalty cost of one day
γ Conversion coefficient that converters the whole investment cost to one-day cost
PES,N,i Rated power of the ESS
EES,N,i Energy of the ESS
λT Cycle life degradation rate of battery over time T
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