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A B S T R A C T   

Lithium-ion batteries are extensively utilized in various applications but face challenges in terms of anode 
performance. Commercial graphite possesses a low theoretical capacity of mAh g− 1, which falls short of the 
desired performance. Alternatively, tin phosphide (Sn4P3) possesses a remarkable theoretical capacity of 1230 
mAh g− 1, making it a highly promising candidate. However, Sn4P3, being a semiconductor, faces challenges such 
as poor conductivity as well as substantial volume expansions during the lithiation–delithiation process. Herein, 
we fabricated a 2D Sn4P3 nanocomposite with high-conductive-interlayer via a breaking-reconstructing strategy. 
In this process, the 2D Sn4P3 layers were first achieved by a liquid-exfoliation method, revealing their unique 
metallic properties by density-functional-theory calculations. Besides, the 2D conductive-interlayer Sn4P3 
demonstrated good electrochemical performance, including high reversible capacity, stable cyclic life, and high- 
rate capabilities. Alternating current impedance spectroscopy analysis further revealed that low charge-transfer 
resistance and a high lithium ion diffusion coefficient, contributing to the enhanced electrochemical perfor-
mance. These findings demonstrate the significance of exfoliating Sn4P3 into layered structures and highlight the 
potential of 2D conductive-interlayer Sn4P3 nanocomposites as promising candidates for high-performance 
anodes.   

1. Introduction 

Lithium-ion batteries (LIBs) play an important role in diverse ap-
plications, including electric vehicles, portable electronics, and elec-
trical storage stations. [1–7] However, as the current anode material, 
commercial graphite falls short of meeting the performance re-
quirements of LIBs because of its limited capacity of 372 mAh g− 1 in 
theory [8–12]. This has spurred significant efforts to explore new anode 
materials with higher capacities, superior rate performance, and longer 
cycle life [13–17]. 

Among the various types of lithium storage mechanisms, conversion 
mechanism-based electrodes, including oxides, sulfides, as well as 
phosphides, have shown promising theoretical capacities compared to 
traditional carbon-based materials that operate through intercalation 
mechanisms [18–23]. In particular, phosphides offer lower and suitable 
potential voltages for lithium storage, which are significantly higher 
than the voltage required for lithium deposition [24–28]. This charac-
teristic decreases the danger of Li dendrite formation and enhances 
safety, especially during overcharging. Additionally, phosphides exhibit 

substantially higher theoretical capacities compared to oxides and sul-
fides [29–33]. For instance, tin phosphide (Sn4P3) possesses a remark-
able theoretical capacity of 1230 mAh g− 1, surpassing tin dioxide (SnO2: 
790 mAh g− 1) as well as tin bisulfide (SnS2: 645 mAh g− 1) [34–36]. 

However, phosphides face certain challenges, including lower elec-
trical conductivity and significant volume changes during the 
discharge/charge process, resulting in a loss of electrical contact as well 
as rapid capacity decay [37–41]. To address these issues, several 
methods have been proposed, such as constructing zero-dimensional 
(0D) Sn4P3/C core–shell structures, [42] three-dimensional (3D) gra-
phene/Ni2P hybrid, [43] and Mn-doped Sn4P3 nanoparticles [44]. While 
these methods relieved the volume expansion during the lith-
iation/delithiation process, achieving the full potential of high theo-
retical capacities remains a challenge, leaving ample room for 
improvement in capacities, rate performance, and long cycle life. 

Herein, we address these challenges by introducing a novel strategy 
for fabricating a 2D Sn4P3 nanocomposite with a high-conductive 
interlayer. Through a breaking-reconstructing process, ultrathin 2D 
Sn4P3 layers are first achieved using a liquid-exfoliation method, 
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showcasing their distinctive metallic properties as elucidated by density- 
functional-theory calculations. Besides, the 2D conductive-interlayer 
Sn4P3 demonstrated good electrochemical performance, such as high 
reversible capacity, stable cyclic life, and high-rate properties. Alter-
nating current (AC) impedance spectroscopy analysis further revealed 
that a high Li+ diffusion coefficient, contributing to the enhanced 
electrochemical performance. The incorporation of conductive carbon 
layer further improved stability and lithium ion transport properties. 
These findings demonstrate the significance of exfoliating Sn4P3 into 2D 
layers and highlight the potential of 2D conductive-interlayer Sn4P3 
nanocomposites as promising candidates for high-performance anodes 
of LIBs. 

2. Experimental 

2.1. The synthesis of 2D Sn4P3 layers 

Bulk Sn4P3 powders were initially suspended in various solvents, 
including IPA, NMP, and DMF, to generate a separate dispersions with 
consistent concentration (2 mg mL− 1). Subsequently, these dispersions 
were subjected to sonication under ambient conditions, inducing the 
gradual exfoliation of the bulk Sn4P3 into few-layer Sn4P3 nanosheets, 
with the extent of exfoliation increasing with sonication time. For 
instance, a quantity of 100 mg of bulk Sn4P3 powders was introduced 
into 50 ml of IPA solvent, pre-saturated with argon (Ar) gas, followed by 
ultrasonication for a duration of 20 h. Subsequent to this treatment, the 
resultant products underwent thorough washing with deionized water 
and ethanol on multiple occasions. 

2.2. The synthesis of 2D high-conductive-interlayer Sn4P3 layers 

Solution A: Dissolve 100 mg of glucose in 80 mL of H2O. Solution B: 
Disperse 160 mg of 2D Sn4P3 layers in 80 mL of H2O. Gradually add 
Solution A into Solution B with stirring. Once added, heat the solution to 
180 ◦C for 12 h by a hydrothermal reaction. Subsequently, pyrolyze the 
mixture under an Ar atmosphere at 500 ◦C. The resulting product is then 
dispersed in 100 mL of H2O for sonication and subsequently filtered 
under vacuum to form the 2D stacked layers. 

2.3. Eletrochemical measurements 

In 2032 coin-type cells, electrochemical experiments were conduct-
ed. The working electrodes were fabricated by blending active materials, 
carbon black, and PVDF at a weight ratio of 7:2:1. This mixture was then 
applied onto pure copper foil and dried at 120 ◦C under vacuum for 12 h. 
The mass loading of active materials was ~ 0.84 mg cm− 2. The counter 
electrode utilized pure lithium foil. The electrolyte consisted of a 1 M 
LiClO4 solution in propylene carbonate, and a PP film served as the 
separator. Assembly of the cells took place in an Ar-filled glove box with 
moisture and oxygen concentrations kept below 0.1 ppm. Charge and 
discharge measurements were conducted using the Land CT2001A sys-
tem at different rates (74.4, 168, 372, 744, 1680, and 3720 mA g− 1). 
Electrochemical performance was evaluated at different current den-
sities within the voltage range of 0.01–3.00 V. Electrochemical imped-
ance spectroscopy (EIS) measurements were carried out using Autolab 
equipment (PGSTAT302N). Impedance spectra were recorded by 
applying a sine wave with an amplitude of 5.0 mV across the frequency 
range from 100 kHz to 0.01 Hz. Fitting of the impedance spectra to the 
proposed equivalent circuit was performed using the Zview software. 

2.4. Calculation of exchange current density 

The exchange current density in active materials can be calculated 
using the equation of J= RT/nFRct, where R is the gas constant (8.314 J 
mol− 1 k− 1), T is the temperature (298 K), n is the number of electrons, F 
is the Faraday constant (96485 C mol− 1), and R is the charge-transfer 

resistance. 

2.5. Calculation of diffusion coefficient of lithium ion 

The Warburg factor (σw) is related to the mass transport, obtained 
from the slope between Zre and ω− l/2, as shown in Fig. 5b in main text. 
From this value, the Li+ diffusion coefficient in the active material can 
be calculated based on the equation of R2T2/2A2n4F4C2σw

2 , where R is 
the gas constant (8.314 J mol− 1 k− 1), T is the temperature (298 K), A is 
the surface area of the electrode (l.13 cm− 2), n is the number of elec-
trons, F is the Faraday constant (96,485 C mol− 1), and C is the molar 
concentration of Li. 

2.6. Calculation of binding energy and PDOS 

To compute the binding energy, the algorithm operates under the 
assumption that the interlayer energy profile forms a single-valley 
curve. It systematically seeks the minimum, ensuring that each step 
results in a reduction of either energy or force. Upon convergence, the 
algorithm provides the maximum binding energy (Eb) at the equilibrium 
distance (d0). Simultaneously, the critical binding force (Fb) is deter-
mined at the critical distance (d1). This algorithm has been implemented 
in Python to ensure compatibility with VASP. 

The Sn4P3 layer calculations were carried out employing the pro-
jector augmented wave (PAW) method, utilizing the Per-
dew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) 
functional, and incorporating the Heyd–Scuseria–Ernzerhof (HSE) 
hybrid functional, a recent addition to the VASP code. The geometrical 
structures were derived from experimental XRD measurements, and the 
energy cutoff for the plane-wave basis expansion was set to 500 eV. 
Total energies were computed using both PBE and HSE functionals, with 
a convergence criterion set at 1 × 10− 5 eV per unit cell. For the partial 
density of states (PDOS) calculations, a denser k-points grid of 8 × 8 × 1 
was employed. 

3. Results and discussion 

The synthesis process for 2D high-conductive-interlayer Sn4P3 
mainly involved three steps (Fig. 1). Initially, the 2D Sn4P3 layer was 
prepared through a liquid-exfoliation process, which involved the 
exfoliation of the Sn4P3 bulk. Subsequently, the conductive carbon layer 
was linked to the surface of 2D Sn4P3 layers by the pyrolysis process. 
Finally, the 2D high-conductive-interlayer Sn4P3 was assembled using a 
2D stacking strategy (See experimental section). 

In the process, Sn4P3 bulk was first synthesized by a facile sol-
vothermal method (Fig. S1). Typically, a mixture of tin (Sn) powders and 
amorphous red phosphorous (P) powders underwent hydrothermal 
treatment at 200 ◦C for 40 h in ethylenediamine solvent under inert 
conditions. The resulting powders were then immersed into aqueous HCl 
solution and collected by centrifugation (For more detailed, see exper-
imental section and supporting information). Then, X-Ray Diffraction 
(XRD) measurements were subsequently performed to validate the 
crystalline structure of the resulting Sn4P3 samples. The XRD spectra, as 
illustrated in Fig. S2, exhibited consistency with the standard PDF card 
of Sn4P3 at the peak positions. This correspondence unequivocally 
demonstrates the successful synthesis of Sn4P3 bulk without any 
impurities. 

In contrast to other phosphides, Sn4P3 has been relatively overlooked 
as a 2D material. However, it should be noted that Sn4P3 is inherently a 
layered material with a hexagonal crystal structure, belonging to the 
space group (R3m) with lattice parameters of a = 3.97 Å and c = 35.33 
Å. [45] This crystal structure is similar to that of antimony (Sb) [46,47] 
and molybdenum disulfide (MoS2) [48,49]. The layers of Sn and P atoms 
alternate and form blocks that are seven layers thick, extending along 
the c-axis. In this arrangement, all P atoms exhibit octahedral 
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coordination by Sn atoms, while half of the Sn atoms are octahedrally 
coordinated by P atoms. Due to the weak Van der Waals forces that 
connect the layers of Sn4P3, a liquid-phase exfoliation method can be 

used to synthesize the 2D Sn4P3 layers (Fig. S3). The scanning electron 
microscope (SEM) images further confirmed that the morphology of 
Sn4P3 bulk where the unique layered structure including cleavage planes 

Fig. 1. Schematic illustration of the synthesis route for 2D Sn4P3 layer and 2D high-conductive-interlayer Sn4P3.  

Fig. 2. a) Typical SEM images of 2D Sn4P3 layers after sonication in IPA solvent, which demonstrates the ultrathin and flexible features. b) Typical HRTEM image of 
2D Sn4P3 layers, which reflect the single crystal character. c) The diagram of interlayer binding energy versus interlayer distance belong to Sn4P3 and graphite, 
respectively. d) Partial density of states (PDOS) diagram of monolayer Sn4P3, reflecting the metallic feature. e) STEM image of 2D high-conductive interlayer Sn4P3 
and relevant elemental mapping images of f) P, g) Sn and h) C in the selected region, reflecting the uniformly distribution of elements. 
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and steps could be directly seen in Fig. S4. 
Theoretical analysis as well as experimental results have confirmed 

that the most efficient exfoliation process for 2D materials occurs when 
there is a good match between the surface energy of the material and the 
surface tension of the solvent [46]. In our research, we considered three 
representative solvents: isopropyl alcohol (IPA), N-methylpyrrolidone 
(NMP), as well as dimethylformamide (DMF), each with different sur-
face energies. Firstly, the Sn4P3 bulk were dispersed in these three sol-
vents with a constant concentration of 2 mg mL− 1. During the 
subsequent sonication process, the solvent molecules gradually pene-
trated the interlayer spaces of Sn4P3, causing the bulk material to expand 
into monolayer and few-layer nanosheets over time. This sonication 
process is analogous to the treatment used for Sb, MoS2, and other 2D 
materials. After the exfoliation process, the 2D Sn4P3 layers were 
collected by centrifugation at 4000 rpm to remove any unexfoliated 
samples, followed by multiple washes with ethanol. Our experimental 
results indicated that IPA was the most effective solvent for exfoliating 
the Sn4P3 bulk into few-layer nanosheets. SEM measurements were 
conducted for comparison, as shown in Fig. 2a and S5–S7. It is evident 
that the layers exfoliated using IPA solvent exhibited lateral sizes 
ranging from 0.2 to 2 μm and displayed ultrathin and flexible charac-
teristics (Fig. 2a), being considerably thinner compared to those exfo-
liated using NMP and DMF solvents. 

To further confirm the structural features, high-resolution trans-
mission electron microscopy (HRTEM) measurements were performed. 
As demonstrated in Fig. 2b, the 2D Sn4P3 layer revealed crystalline 
lattice fringes with a spacing of 0.31 nm, corresponding to the (015) 
facets of Sn4P3. To determine the precise thickness, atomic force mi-
croscopy was conducted, indicating that the Sn4P3 layer has a thickness 
ranging mainly from 1 to 3 nm, corresponding to 1 to 3 layers (Fig. S8). 
Elemental mapping measurements were employed to analyze the dis-
tribution of Sn and P, confirming their uniform dispersion on the 2D 
Sn4P3 layers (Fig. S9). 

In order to assess the difficulty and energy requirements for exfoli-
ating Sn4P3 bulk into few-layer or monolayer nanosheets, we conducted 
calculations to determine the binding energy between layers as a func-
tion of interlayer distance, and compared it with graphite. The calcu-
lated binding energy for graphite layers, as shown in Fig. 2c, was found 
to be 0.41 J m− 2, which corresponds to 68 meV atom− 1. This value 
closely matches the experimental value of 62 meV atom− 1, validating 
the accuracy of our calculations. Additionally, we found that the binding 
energy for Sn4P3 layers was 0.70 J m− 2, which is only 1.7 times larger 
than that of graphite. This suggests that the exfoliation of few-layer 
Sn4P3 nanosheets from the bulk material can be achieved through 
liquid exfoliation. Importantly, our theoretical calculations have 
demonstrated that monolayer Sn4P3 exhibits metallic behavior, as 
indicated by the distribution of PDOS across the Fermi level, as shown in 
Fig. 2d. This finding is significant, as it represents the first report of a 
phosphide material exhibiting metallic behavior. 

Subsequently, the as-prepared 2D Sn4P3 layers were combined with 
glucose and subjected to hydrothermal treatment at 180 ◦C for 12 h. This 
process allowed the glucose molecules to crosslink on the surface of the 
2D Sn4P3 layers, leading to the formation of Sn4P3-glucose stacks. 
Within these stacks, the 2D Sn4P3 layers were weakly interconnected by 
the glucose polymer. Following the hydrothermal treatment, the sam-
ples were subjected to pyrolysis under Ar atmosphere. This process 
made the formation of unique layer-by-layer structured nanocomposites 
consisting of 2D Sn4P3 layers linked with conductive carbon layers (See 
experimental section). 

To confirm the morphology and composition of the 2D conductive- 
interlayer Sn4P3, SEM and HRTEM measurements were conducted 
(Fig. S10a and b). The SEM images clearly reveal the unique layer-by- 
layer structure of the 2D conductive-interlayer Sn4P3 nanocomposites. 
Furthermore, the HRTEM image provides detailed information on the 
thickness of the carbon layer attached to the surface of 2D conductive- 
interlayer Sn4P3, which measures ~ 1 nm. Additionally, the carbon 

content in the 2D conductive-interlayer Sn4P3 nanocomposites was 
estimated to be around 11 wt% through acid etching of the Sn4P3 
component. Besides, the homogeneous elemental dispersions of Sn, P, 
and C observed in the 2D conductive-interlayer Sn4P3 samples further 
confirm the successful recombination between the 2D Sn4P3 layers and 
interlayer carbon (Fig. 2e–h). 

Subsequent XRD, X-ray photoelectron spectroscopy (XPS), and 
Raman measurements were conducted to gain deep understandings into 
the crystalline structure as well as compositions of the 2D Sn4P3 layers 
and the 2D high-conductive-interlayer Sn4P3 nanocomposites. In Fig. 3a 
and S11, the XRD spectrums of the exfoliated 2D Sn4P3 layers exhibit 
similar phase peaks to those of Sn4P3 bulk, albeit with slightly lower 
intensities. This observation is consistent with previous findings for 
exfoliated 2D materials, such as antimonene, [46] graphene, [50,51] 
and MoS2 nanosheets [52]. Additionally, the Raman spectra of 2D Sn4P3 
layers show a weaker and broadened peak compared to Sn4P3 bulk 
(Fig. 3b and Fig. S12), providing further evidence of successful exfoli-
ation. In contrast, the 2D high-conductive-interlayer Sn4P3 nano-
composites exhibit even lower intensity in the XRD patterns compared to 
that of 2D Sn4P3 layers, along with the emergence of a new peak at 
23.5◦, which can be ascribed to the amorphous carbon layer on the 
surface of 2D conductive-interlayer Sn4P3 nanocomposites. Further-
more, two peaks at 1330 and 1600 cm− 1 in the Raman spectra corre-
spond to the D and G bands of graphite, respectively (Fig. 3b). These 
observations serve as strong indicators of the successful combination of 
2D Sn4P3 layers with carbon. To further investigate the hybridization 
between 2D Sn4P3 layers and carbon layers, XPS tests were undertaken. 
The XPS spectra depicted in Fig. 3c unequivocally validate the presence 
of Sn, P, C, and O species, with an absence of any extraneous impurities. 
The Sn 3d spectrum (Fig. 3d) reveals the presence of four distinctive 
peaks, indicating the coexistence of Sn4+ and Sn2+ at a ratio of 6.6: 1 
within the Sn4P3 structure. Additionally, a prominently broad peak is 
observed at approximately 134 eV in the P 2p spectrum, providing 
further confirmation of the presence of P–O–C bonds. Moreover, the 
presence of C–O–P bonds can also be substantiated by analyzing the C 
1 s spectrum, which demonstrates the coexistence of C–O–P and 
C–O–C moieties (Fig. 3e). [30] 

To evaluate the electrochemical performance of the 2D high- 
conductive-interlayer Sn4P3 nanocomposites and 2D Sn4P3 layers, cy-
clic voltammetry (CV) measurements were conducted. In Fig. 4a, the 
first two cycle curves of 2D high-conductive-interlayer Sn4P3 nano-
composites were tested in the voltage range of 0.01 ~ 3 V with 0.1 mV 
s− 1 are displayed. It can be observed that a broad peak appears at 1.1 V 
in the initial discharge process, which is attributed to lithium insertion 
into the 2D conductive-interlayer Sn4P3 electrodes. Additionally, two 
peaks are shown around 0.7 and 0.1 V, corresponding to the reaction of 
Li with P and Sn, as well as the formation of a SEI film, respectively. The 
two oxidation peaks centered at 0.5 and 1.0 V in the initial cycle 
correspond to the decomposition of LixSn and Li3P, respectively. [53,54] 
The final electrochemical reaction can be represented by the equation: 
Sn4P3+19Li+19e− = 3Li3P+2Li5Sn2. These observations are consistent 
with the behavior of 2D Sn4P3 layer electrode (Fig. S13) and previously 
reported Sn4P3 electrodes. 

Furthermore, typical charge-discharge curves of 2D high-conductive- 
interlayer Sn4P3 electrodes are shown in Fig. 4b, exhibiting a platform at 
around 0.5 V during the charge stage, which is in agreement with the CV 
results and the behavior of 2D Sn4P3 layers (Fig. S14). The initial 
Coulombic efficiency for 2D high-conductive-interlayer Sn4P3 and 2D 
Sn4P3 is calculated as 61.5 % and 35.9 %, respectively. This indicates the 
high reversibility of 2D conductive-interlayer Sn4P3 electrodes should be 
ascribed to their unique layered structure and high-conductive carbon 
layers. The reversible capacity and cyclic properties of 2D conductive- 
interlayer Sn4P3, 2D Sn4P3 layers, and Sn4P3 bulk were evaluated and 
compared (Fig. 4c). Remarkably, both 2D conductive-interlayer Sn4P3 
and 2D Sn4P3 layer electrodes exhibit similar high reversible capacities 
of up to 1023 and 986 mAh g− 1, respectively, at 74.4 mA g− 1. These 
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Fig. 3. a) XRD and b) Raman spectra of 2D high-conductive-interlayer Sn4P3, 2D Sn4P3 layers, and Sn4P3 bulk, respectively. c) XPS spectra of 2D high-conductive- 
interlayer Sn4P3. High resolution of d) Sn 3d, e) P 2p, and f) C1s XPS spectra of 2D high-conductive-interlayer Sn4P3, respectively. 
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Fig. 4. a) CV and b) Discharge-charge curves of 2D high-conductive-interlayer Sn4P3 at the first two cycles, respectively. c) Cyclic performance of 2D high- 
conductive-interlayer Sn4P3, 2D Sn4P3 layer, and Sn4P3 bulk electrodes at current density of 74.4 mA g− 1, respectively. d) Rate performance of 2D high- 
conductive-interlayer Sn4P3, 2D Sn4P3 layer, and Sn4P3 bulk electrodes at current density of 74.4, 186, 372, 744, 1860, and 3720 mA g− 1, respectively. e) Cyclic 
performance of 2D high-conductive-interlayer Sn4P3, 2D Sn4P3 layer, and Sn4P3 bulk electrodes at high current density (3720 mA g− 1), respectively. 
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values are close to the theoretical capacity of 1230 mAh g− 1 and 
significantly higher than that of Sn4P3 bulk electrodes. At 30 cycles, the 
charge capacity of 2D conductive-interlayer Sn4P3 electrodes remains at 
591 mAh g− 1, exceeding that of 2D Sn4P3 layer (428 mAh g− 1) and Sn4P3 
bulk (211 mAh g− 1) electrodes (Fig. 4c). This suggests that the carbon 
layer in 2D conductive-interlayer Sn4P3 can buffer the significant vol-
ume expansion, improve stability with cycling, and increase the capacity 
compared to 2D Sn4P3 layer. 

Furthermore, excellent high-rate performance is achieved by 2D 
conductive-interlayer Sn4P3 electrodes. As shown in Fig. 4d, the 2D 
conductive-interlayer Sn4P3 exhibits high reversible capacities of 404 
and 365 mAh g− 1 at high current densities of 1860 and 3720 mA g− 1, 
respectively. In contrast, 2D Sn4P3 layer and Sn4P3 bulk electrodes only 
exhibit relatively low capacities of 173 and 85 mAh g− 1 at the highest 
current density (3720 mA g− 1), which are much lower than that of 2D 
conductive-interlayer Sn4P3 electrodes. To assess the cyclic stability 
under high current density, the cyclic stability was tested for 580 cycles 
at 3720 mA g− 1 (Fig. 4e). Even after 580 cycles, the 2D conductive- 
interlayer Sn4P3 electrodes still maintain an extraordinarily high 
charge capacity of 446 mAh g− 1, which is superior to those of reported 
Sn4P3 electrodes (Table S1). This remarkable long cyclic life further 
confirms that the unique layer-by-layer structure can effectively buffer 
the significant volume expansion during the discharge-charge process. 

In order to gain insights into the enhanced electrochemical proper-
ties of the high-conductive-interlayer Sn4P3 electrodes, AC impedance 
spectra were performed on the 2D conductive-interlayer Sn4P3, 2D 
Sn4P3 layer, and Sn4P3 bulk electrodes. The Nyquist plot of the 2D 
conductive-interlayer Sn4P3 in Fig. 5a was fitted by a modified Randles 
equivalent circuit (Fig. S15). The plot comprises a semicircle at high 
frequencies, signifying the charge-transfer kinetic-controlled region, 
and a linear segment at low frequencies, representing the mass transfer- 
controlled Warburg region. The charge-transfer resistance (Rct) obtained 
from the spectra demonstrates the inhibitory effect on current density. 
The high-conductive-interlayer Sn4P3 electrodes exhibit a very low Rct 
value of 10.9 Ω, which is significantly lower than that of the 2D Sn4P3 
layers (14.5 Ω) and Sn4P3 bulk (16.6 Ω) (Table S2), indicating the 
remarkable improvement in electrochemical performance of 2D 
conductive-interlayer Sn4P3 nanocomposites. 

Exchange current densities were calculated and summarized in 
Table S2. The exchange current density of high-conductive-interlayer 
Sn4P3 is 91.8 mA cm− 2, higher than that of 2D Sn4P3 layers (69 mA 
cm− 2) and Sn4P3 bulk (60.3 mA cm− 2). Furthermore, the diffusion co-
efficients of lithium ions in high-conductive-interlayer Sn4P3, 2D Sn4P3 
layer, and Sn4P3 bulk were systematically calculated using the equation 

D = R2T2/2A2n4F4C2σw
2 (for details, see the supporting information) 

[55]. Notably, the σw represents the relationship between Zre and ω(− 1/2) 

in the low-frequency region (Fig. 5b). High-conductive-interlayer Sn4P3 
electrodes exhibit an extremely large diffusion coefficient of lithium 
ions, reaching 5.27 × 10− 12 cm2 s− 1, which is ~ 5 and 50 times higher 
than that of 2D Sn4P3 layer (1.04 × 10− 12) and Sn4P3 bulk (1.37 ×
10− 13), respectively (Table S2). These results indicate that the exfolia-
tion of bulk Sn4P3 into few-layer nanosheets significantly improves the 
electrical conductivity and diffusion coefficient of Li+. Additionally, the 
unique layer-by-layer structure formed by carbon and 2D Sn4P3 layers 
facilitates the transfer of electrons and lithium ions, further enhancing 
the electrochemical performance of high-conductive-interlayer Sn4P3 
nanocomposites. 

4. Conclusion 

In conclusion, we successfully synthesized 2D Sn4P3 layers with high- 
conductive-interlayer and unique layer-by-layer structure using a 
breaking and reconstructing strategy. Besides, the exfoliation of 2D 
Sn4P3 layers was achieved through a liquid-exfoliation method, 
revealing their metallic properties. Electrochemical performance testing 
demonstrated that 2D Sn4P3 with high-conductive carbon layer exhibi-
ted good electrochemical performance, including high charge capacity 
(1023 mAh g− 1), stable cyclic life (580th), and high-rate performance 
(3720 mA g− 1). Furthermore, AC impedance spectroscopy analysis 
provided insights into the superior electrochemical performance of 2D 
conductive-interlayer Sn4P3 nanocomposites, attributed to the high Li+

diffusion coefficient. These results highlight the significance of exfoli-
ating Sn4P3 into layered structures for enhancing electrochemical per-
formance, with the introduction of a carbon layer further improving 
stability and ion transport properties. Therefore, the 2D conductive- 
interlayer Sn4P3 nanocomposites hold promise as a candidate material 
for high-performance LIBs. These findings offer valuable insights for the 
development of high-performance and sustainable energy storage 
solutions. 
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