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Constructing single-atom Fe
sites into defective carbon
for efficient oxygen reduction

Jianan Gu,1,2 Shouwei Zuo,1 Yuanfu Ren,1 Meicheng Li,2,*

and Huabin Zhang1,*
Achieving highly efficient oxygen reduction reaction (ORR) catalysts
to replace Pt-based materials remains a significant challenge. In the
June issue of Chem Catalysis, Prof. Wang’s group reported a single-
atom Fe-carbon catalysis with Fe-C5 coordination for stable and effi-
cient oxygen electroreduction.
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The ORR is an important chemical pro-

cess in many energy systems, including

fuel cells and metal-air batteries, which

are vital for a wide range of applications

from automotive technologies to renew-

able energy storage.1 Currently, platinum

(Pt) and Pt-group metals are the predom-

inant choices for ORR catalysts due to

their superior catalytic efficiency. Howev-

er, their high cost, scarcity, and suscepti-

bility to environmental degradation

pose significant barriers to widespread

adoption and sustainability.2

Given these challenges, there is a crit-

ical need for alternative catalysts that

are not only cost-effective but also pro-

vide comparable or superior perfor-

mance to Pt-based catalysis. Thus, re-

searchers have increasingly turned

their attention to single-atom catalysts

(SACs).3,4 SACs provide maximum

atom utilization and the potential for

precise adjustment of electronic prop-

erties through careful coordination

with their environment, which can result

in excellent catalytic activity and selec-

tivity.5,6 However, in most SACs, the co-

ordination environment is highly com-

plex due to the diverse nonmetal

heteroatoms involved, such as C, N,

and O. This complexity makes it chal-

lenging to accurately identify the exact

active sites.7 Thus, a major challenge

in the development of SACs for ORR
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has been finding a way to effectively

integrate active single metal sites into

a well-defined structure, which can

clearly delineate the active sites and

maximize the catalyst’s performance.8,9

In this June issue of Chem Catalysis,

Wang and his colleagues developed a

SAC featuring Fe-C5 coordination

within a well-defined pentagon-rich

defective carbon (PDC) structure using

a chemical vapor deposition (CVD)

strategy.10 This PDC serves as a robust

matrix that not only supports the

dispersion of single Fe atoms but also

induces a favorable electronic structure

due to its unique geometry. The result-

ing Fe-C5 catalyst demonstrated signif-

icantly superior ORR performance

compared to N-coordinated sites,

and it also exhibited high mass activity

and turnover frequency. This research

broadens the understanding of the

relationship between the atomic struc-

ture of catalysts and their performance,

contributing valuable insights to the

field of SACs used in ORR.10

In this work, the authors constructed a

Fe-C5 SAC that mainly involves three

steps. Initially, the PDC precursor was

synthesized using a hydrothermal

method. This was followed by high-

temperature pyrolysis to remove Zn

species from the precursor, yielding
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PDC samples. During this phase, a

pentagon-rich carbon matrix was

created through controlled pyrolysis

of phenol-formaldehyde resins mixed

with ZnCl2. This step not only intro-

duced pentagonal defects but also

provided precise control over the

microstructural properties of the car-

bon support. Finally, the samples were

exposed to FeCl3 under specific condi-

tions, which facilitated the targeted

insertion of Fe atoms at the defect sites,

completing the formation of the Fe-C5

sites (Figure 1A).10

To verify the structure and composition

of the resultant FeSAC-PDC, high-angle

annular dark-field scanning transmission

electron microscopy (HAADF-STEM)

and synchrotron-radiation-based X-ray

absorption near-edge structure (XANES)

and extended X-ray absorption fine struc-

ture (EXAFS) measurements were used.

As shown in Figure 1B, where numerous

bright spots, highlighted with yellow cir-

cles, are evident in the HAADF-STEM im-

age, which can be attributed to the Fe

atoms. This observation confirms a ho-

mogeneous distribution of Fe atoms

within the defective carbon matrix. The

XANES spectra from the Fe K-edge (Fig-

ure 1C) show that the pre-edge positions

of the FeSCA-PDC fall between Fe foil and

iron(II) phthalocyanine (FePc), indicating

Fe valence is between 0 and 2+. FeSCA-

PDC’s pre-edge is notably more negative

than FeSCA-pyrrolic N doped carbon

(PON) and FeSCA-pyridinic N doped car-

bon (PDN), suggesting a lower Fe oxida-

tion state, likely due to carbon’s lower

electronegativity compared to nitrogen.
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Figure 1. Schematic illustration of the syntheses of single-atom Fe-C5 catalysis and its ORR application

(A) Schematic illustration of the preparation of FeSAC-PDC.

(B) AC-HADDF-STEM image of FeSAC-PDC.

(C) Fe K-edge XANES spectra of FeSAC-PDC, FeSAC-PON, FeSAC-PDN, FePc, and Fe foil references.

(D) k3-weighted Fourier transform curves derived from EXAFS spectra at R space.

(E) Linear sweep voltammetry curves of FeSAC-PDC, FeSAC-PON, FeSAC-PDN, and Fe-NC in O2-saturated 0.1 M potassium hydroxide.

(F) The charge density difference in the model of FeSAC-PDC, FeSAC-PON, FeSAC-PDN, and Fe-NC (the colors yellow and cyan represent the charge

accumulation and depletion, respectively).

(G and H) The Gibbs free energy diagram of the 4e� oxygen reduction process of different models at (G) U = 0 V and (H) U = 1.23 V is calculated.

Reprinted with permission from Wang and co-workers.10 Copyright 2024, Cell Press.
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The EXAFS R-space plots confirm the Fe-

N/C coordination sphere at�1.5 Å, align-

ing with Fe-N distances in FePc and prior

reports (Figure 1D).10

Electrochemical evaluation of the cata-

lysts reveals that the Fe-C5 configured

sites exhibit significantly higher cata-

lytic activity compared to N-coordi-
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nated Fe sites, which have been the

focus of previous studies. Figure 1E

presents the polarization curves for

different Fe single atomic samples.

Notably, FeSAC-PDC demonstrates

superior ORR activity, achieving a

half-wave potential of 0.866 V vs.

RHE (reference hydrogen electrode)

and a limiting current density of
5.06 mA cm�2. These results not

only surpass the other samples but

also match the performance of the

20% Pt/C catalyst.10

Kinetic analyses show that the Fe-C5

sites facilitate a more favorable interac-

tion with O, leading to enhanced

ORR performance. The study also
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employs density functional theory cal-

culations to explore how different Fe

coordination environments affect ORR

activity and catalytic mechanisms.

Four models were analyzed: P-FeC5,

P-FeN2C2, H-FeN2C2, and C-FeN4 (Fig-

ure 1F). Charge density analyses show

that the P-FeC5 model has the highest

electron transfer to the Fe center, sug-

gesting a more effective ORR process.

Gibbs free energy calculations reveal

that all models exhibit spontaneous

ORR reactions at 0 V, becoming endo-

thermic at higher potentials. For most

models, except C-FeN4, the rate-deter-

mining step in the ORR process occurs

during the desorption of *OH from

active sites. (Figures 1G and 1H).10

In conclusion, Wang et al. introduced a

single-atom Fe-carbon catalysis with

Fe-C5 coordination for stable and effi-

cient oxygen electroreduction via py-

rolysis-CVD strategy.10 The findings

significantly advance the field of elec-

trocatalysis by demonstrating a viable

pathway to enhance ORR performance

without relying on precious metals.

The innovative approach of using

pentagonally coordinated single-

atomic Fe sites embedded in a defec-

tive carbon matrix not only achieves

outstanding catalytic performance but
also paves the way for further advance-

ments in the development of sustain-

able and efficient catalytic materials.
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