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ABSTRACT

Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise
control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable
thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined
reaction space to fabricate ultrathin 2D Sn,P; nanosheets in large-scale. By carefully adjusting the rolling number during the
processing of Sn/Al foils, we have successfully fabricated Sn,P; nanosheets with varied layer thicknesses, achieving a
remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn,P; nanosheets display an exceptional initial
capacity of 1088 mAh-g™, nearing the theoretical value of 1230 mAh-g™'. Furthermore, we reveal their high-rate property as well
as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer
thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn,Ps;, marking a significant
advancement in developing high-performance energy storage systems.
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1 Introduction

Recent advancements in materials science have brought two-
dimensional (2D) materials into the limelight, thanks to their
distinctive physical, chemical, and electronic attributes [1-6].
Demonstrating considerable promise in diverse applications
including energy storage, semiconductors, and energy conversion,
a variety of strategies have been devised for synthesizing 2D
materials [7-13]. These approaches are principally categorized
into two main pathways: the top-down method, which includes
liquid or mechanical exfoliation, and the bottom-up method,
encompassing techniques such as chemical vapor deposition
(CVD) or the van der Waals epitaxy approach [14-19].

The synthesis strategies for 2D materials hold significant
importance due to their critical role in overcoming the challenges
associated with fabricating these materials. However, synthesizing
2D materials often presents substantial hurdles, including
controlling layer thickness, uniformity, and composition at the
nanoscale [20-23]. For instance, the exfoliation method frequently
produces nanosheets with varying thickness and numerous by-
products, limiting its precision [24-27]. Conversely, methods such
as CVD or van der Waals epitaxy offer some control over
thickness by adjusting reaction times, temperatures, and quantities
of reactants but are hampered by low yield and high energy
demands, which curtail their broader application [28-31].

Topochemical transformation has emerged as a potent method for
fabricating 2D materials with precise control over their
composition and morphology [32, 33]. This approach leverages a
solid-state reaction within a 2D plane, transforming precursors
into layered structures with high precision. Topochemical
synthesis distinguishes itself by its ability to produce high-purity
materials with substantial mass and controlled phase composition,
thereby opening new avenues for the synthesis of 2D materials
while maintaining the integrity of the layered structure [34, 35].
Despite these advancements, the large-scale synthesis of ultrathin
2D materials with controllable thickness remains a daunting
challenge [36]. This limitation significantly impacts the
performance of 2D materials in practical applications, especially in
fields like energy storage and catalysis, where precise material
characteristics are crucial for efficiency and effectiveness.

Herein, we adopt a pioneering and efficient topochemical
synthesis strategy, employing a confined reaction space to fabricate
ultrathin 2D Sn,P; nanosheets in large-scale. By carefully adjusting
the rolling number during the processing of Sn/Al foils, we have
successfully fabricated Sn,P; nanosheets with varied layer
thicknesses, achieving a remarkable minimum thickness of
roughly two layers (~ 2.2 nm). Remarkably, the bilayer Sn,P,
nanosheets display an exceptional initial capacity of 1088 mAh-g”,
nearing the theoretical value (1230 mAh-g"). Furthermore, we
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reveal their high-rate property as well as outstanding cycle life,
maintaining capacity without fading more than 3000 cycles. By
precisely controlling the layer thickness and ensuring nanoscale
uniformity, we enhance the lithium cycling performance of Sn,P;,
marking a significant advancement in the development of its
practical application.

2 Experimental

2.1 The synthesis of bilayer, three-layer, and four-layer
Sn,P; nanosheets

Initially, Al and Sn foils were subjected to repeated folding and
rolling using a rolling machine. By varying the number of rolling
processes, nanosheets of different thicknesses were produced, with
the bilayer Sn,P; nanosheets being rolled 27 times, three-layer
Sn,P; nanosheets being rolled 20 times, and four-layer Sn,P,
nanosheets being rolled 15 times. Subsequently, these Al-Sn
stacked nanosheets underwent phosphorization through a simple
hydrothermal method using red P powder at 200 °C for 40 h in an
ethanediamine solvent. This process allowed the resulting Sn,P; to
retain its 2D morphology, originally derived from Sn nanosheets,
due to the confinement of the reaction within the 2D plane by the
metallic Al nanosheets. Finally, the Sn,P; nanosheets were
acquired by etching the previously mentioned Al nanosheets in
0.1 M HCI aqueous solution, followed by several washes with
deionized water and ethanol.

2.2 Morphological and structural characterization

The morphology and microstructure of these samples were
comprehensively analyzed using a range of techniques. Atomic
force microscopy (AFM) provided detailed surface topography
and texture information. High-angle annular dark-field scanning
transmission  electron microscopy (HAADEF-STEM) was
conducted on a FEI Themis Z. Transmission electron microscopy
(TEM) and selected area electron diffraction (SAED)
examinations were conducted on a Tecnai G2 F20 U-YWIN
system, offering insights into the nanoscale structure and
arrangement of these materials. X-ray diffraction (XRD)
measurements were conducted with a Rigaku D/max2500PC,
utilizing Gu Ko radiation, over a range of 20° to 70° to verify the
crystalline structure as well as phase composition of these samples.
Additionally, Raman spectroscopy was used to assess the
vibrational properties of these samples, utilizing a Horiba JY

Rolling

P
'
i
i
'
1
i
'
'
i
[
I
i
i
'
i
i
'
'

Rolling machine

Folding

-
Selective
% Sl

Sn,P;nanosheets

Nano Res.

LaRAM ARAMIS Raman microscopy system. These
comprehensive characterization techniques collectively provided a
thorough understanding of the samples’ physical and chemical
properties.

2.3 Electrochemical measurements

Electrochemical tests were performed based on 2032 coin-type
cells. The working electrodes were fabricated by blending active
materials with acetylene black and polyvinylidene fluoride (PVDF)
in a 7:2:1 weight ratio, which was then spread onto pure Cu foil
(with an active material mass loading of ~ 0.7 mg:cm™). Pure Li
foil and polypropylene (PP) film were used as the counter
electrode and separator, respectively. The electrolyte was
composed of a 1.0 M LiPF; in a mixture of ethylene
carbonate:dimethyl carbonate (EC:DMC, 1:1 wt.%). Repeated
discharge/charge tests were performed on a Land CT2001A across
a broad range of current densities (50, 100, 200, 400, 800, 1600,
3200, and 6400 mA-g™), within a voltage window of 0.01 to 3.00 V.
Electrochemical impedance spectroscopy (EIS) measurements
were carried out using CHI 760E.

3 Results and discussion

As depicted in Fig. 1, the topochemical synthesis of bilayer Sn,P;
nanosheets involves three primary steps. Initially, Sn-Al stacking
nanosheets are prepared through a repeated rolling and folding
technique, wherein Sn and Al foils are rolled together 27 times
using a roller press. Theoretically, this process can reduce the
thickness of the Sn or Al to 2" times based on their original
thickness [37]. However, due to the varying ductility of the
materials and the rolling process’s limitations, achieving the
theoretical thickness reduction is a challenge. By varying the
number of rolling times (n = 27, 20, and 15), we can produce a
series of Sn nanosheets with different thicknesses. Subsequently,
the resultant Al-Sn stacking nanosheets undergo a
phosphorization process using a straightforward hydrothermal
method with red phosphorus powder at 200 °C for 40 h in
ethanediamine solvent (Fig. S1 in the Electronic Supplementary
Material (ESM)). This topochemical transformation process allows
the resulting Sn,P; to maintain its 2D morphology, which is
derived from Sn nanosheets, as the metallic Al nanosheets confine
the reaction to a 2D plane. Finally, Sn,P; nanosheets are obtained
by etching away the Al nanosheets in a 0.1 M HCI aqueous
solution (Fig. S2 in the ESM).

The morphology and thickness of the synthesized nanosheets
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Figure1 Schematic illustration of the synthesis route for bilayer Sn,P; nanosheets, which mainly involves three steps: repeated rolling and folding, phosphorization by

confined reaction, and selective etching by 0.1 M HCl aqueous solution.

ﬁ ?/\ “é itk @ Springer | www_.editorialmanager.com/nare/default.asp

527 Tsinghua University Press



Nano Res.

were first examined by TEM and HAADF-STEM measurements.
TEM observations demonstrated the ultrathin nature of the
bilayer Sn,P; nanosheets, as illustrated in Fig.S3 in the ESM.
Several foldable and transparent nanosheets were directly
observable. High-resolution TEM (HRTEM) image (Fig. S4 in the
ESM) showcased that the lattice spacing is 0.198 nm, matching the
(110) facet belonging to Sn,P;. Additionally, HAADF-STEM
images (Figs. 2(a)-2(d)) and the corresponding SAED patterns
(Fig. S5 in the ESM) revealed a high-quality and single-crystalline
hexagonal phase, akin to those observed in graphene and
antimony [25], underscoring the high structural quality of these
synthesized nanosheets. AFM measurements in Figs. 2(e) and 2(f),
and Figs. S6 and S7 in the ESM vividly display a multitude of
nanosheets, with sizes ranging from 0.4 to 0.8 um, which could be
intuitively observed. A statistical analysis of the thickness
distribution of these nanosheets is presented in Fig. 2(g) and Table
S1 in the ESM. The thicknesses of these nanosheets predominantly
fall within the 2-3 nm range, accounting for 66.7% of the entire
sample, aligning closely with the characteristics of bilayer Sn,P,
(2236 nm). Notably, by fine-tuning the rolling number, we have
successfully prepared nanosheets with varying thicknesses,
corresponding to three-layer (Figs. S8-510 in the ESM) and four-
layer Sn,P; (Figs. S11 and S12 in the ESM), demonstrating the
capability to control the number of layers.

To verify the crystal structure of the prepared Sn,P; nanosheets,
XRD analysis was performed. The XRD pattern, depicted in Fig.
3(a), reveals distinct peaks at 28.7°, 30.2°, 31.4°, 44.4°, and 45.6°.
These peaks correspond to the (015), (0012), (107), (0114), and
(110) crystal facets of Sn,P;, respectively [38,39]. Notably, the
(110) crystal facet aligns with observations from HRTEM results
previously discussed (Fig. S4 in the ESM). Additionally, the XRD
spectra indicate that the bilayer Sn,P; nanosheets exhibit
significantly weaker intensity compared to their three-layer and
four-layer counterparts (Fig. 3(b)). This reduction in intensity is
attributed to the decreased thickness of the nanosheets, which
results in diminished XRD signal strength. This observation is
further supported by Raman spectroscopy analysis. As exhibited

3

in Fig. 3(c), the peak at 208 cm™ for bilayer Sn,P; nanosheets is
noticeably weaker in intensity when compared to those of the
three-layer and four-layer Sn,P; nanosheets. This trend is
consistent with that observed in other exfoliated 2D
nanomaterials, such as graphene and Sb nanosheets [25], where
layer thickness has a pronounced effect on the intensity of spectral
features, confirming the sensitivity of these techniques to changes
in the structural dimensions of nanomaterials.

X-ray photoelectron spectroscopy (XPS) tests were conducted
to confirm the element state of bilayer Sn,P; nanosheets, as shown
in Fig. 3(d). The absence of elements other than Sn, P, C, and O
attests to the high purity of the bilayer Sn,P; nanosheets. In the Sn
3d spectrum (Fig. 3(e)), four distinct peaks are observed, signifying
the simultaneous presence of Sn* and Sn* states within the Sn,P;
structure. This coexistence indicates a complex valence state of Sn,
contributing to the material’s unique properties. Furthermore, the
P 2p spectrum displays a notably broad peak around 134 eV,
which corroborates the existence of P-O bonds. This finding
suggests the formation of P-O bonds, possibly due to surface
oxidation or the interaction of P with residual oxygen-containing
groups.

Galvanostatic discharge/charge measurements were performed
across a wide range of current densities, from 50 to 6400 mA-g”,
to evaluate the electrochemical performance of bilayer Sn,Ps
electrodes (Figs. 4(a)-4(d)). As shown in Figs. 4(b) and 4(c),
the bilayer Sn,P; electrodes demonstrated an exceptionally
high reversible capacity of 1084 mAh-g” at 50 mA-g". This
capacity is remarkably close to the theoretical capacity of Sn,P,
(1230 mAh-g™) and surpasses those of three-layer (1059 mAh-g?),
four-layer (1066 mAh-g"') Sn,P; nanosheets, and bulk Sn,P,
(808 mAh-g") (Fig. 4(d) and Figs. S13-S16 in the ESM), as well as
previously reported Sn,P;-based anode materials [38—43]. With
increasing the current density up to 800 mA-g”, the reversible
capacity of the bilayer Sn,P; remained impressively high at
570 mAh-g", significantly exceeding the capacities of three-layer
(489 mAh-g"), four-layer (353 mAh-g") Sn,P; nanosheets, and
bulk Sn,P; (144 mAh-g"). Furthermore, after 300 cycles at
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Figure2 (a) HAADF-STEM image of bilayer Sn,P; nanosheets. (b) and (c) The surface atom profiles in (a). (d) Three-dimensional (3D) and 2D maps of bilayer
Sn,P; nanosheets in (a). (e) and (f) AFM images of bilayer Sn,P; nanosheets. (g) The statistical diagram about the thickness of the bilayer Sn,P; nanosheets based on

(e), and Fig. S4 and Table S1 in the ESM.
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Figure3 (a) XRD patterns of bilayer, three-layer, and four-layer Sn,P; nanosheets. (b) and (c) Raman spectra of bilayer, three-layer, and four-layer Sn,P; nanosheets.
(d) XPS spectra of bilayer Sn,P; nanosheets. High resolution XPS spectra of (e) Sn 3d and (f) P 2p of bilayer Sn,P; nanosheets.
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Figure4 (a) Schematic of Sn,P; anode with Li counter electrode. (b) First-two charge-discharge curves of bilayer Sn,P; nanosheets at the current density of 0.05 A-g™.
(c) and (d) Rate performance of bilayer, three-layer, and four-layer Sn,P; nanosheets and bulk Sn,P; at various current density. () Cyclic performance of bilayer, three-
layer, and four-layer Sn,P; nanosheets and bulk Sn,P; at the current density of 1.6 A-g™ for 300 cycles. (f) Ultralong cyclic performance of bilayer Sn,P; nanosheets up

t0 1000 cycles at 6.4 A-g™.

1600 mA-g”, the reversible capacity of the bilayer Sn,P;
nanosheets remained stable at 586 mAh-g™* without any decay, as
shown in Fig.4(e). In comparison, three-layer, four-layer Sn,P,
nanosheets, and bulk Sn,P; exhibited capacities of 450, 266, and
125 mAh-g’, respectively. Remarkably, the bilayer SnP;
nanosheets demonstrated an exceptional cycle life and stability,
even when tested at the highest current density up to 6.4 A-g™". The
bilayer Sn,P; electrodes delivered an ultrahigh capacity of
330 mAh-g” even after 1000 cycles (Fig. 4(f)). To the best of our
knowledge, such outstanding electrochemical performance has
never before been achieved by Sn,P;-based anodes, as summarized
in Fig.5(a) and Table S2 in the ESM. This exceptional
electrochemical behavior underscores the significant potential of
bilayer Sn,P; nanosheets as anode materials for future energy
storage applications.

To assess the lithium storage mechanism of bilayer Sn,P;
electrodes, cyclic voltammetry (CV) analysis was initially
performed. Figure 5(b) illustrates the CV profiles of the first two
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cycles for bilayer Sn,P; nanosheets, conducted at 25 °C within a
voltage range of 0.01 to 3 V. Notably, a broad peak at 1.08 V
during the first discharge cycle indicates Li insertion into the
bilayer Sn,P; electrodes. Furthermore, two peaks observed around
0.75 and 0.09 V are attributed to the alloying of Li,P and Li,Sn.
Subsequently, two peaks at 0.54 and 1.15 V appeared during the
charge process, which should be attributed to the decomposition
of LiSn and Li;P, respectively [40-42]. These findings are
consistent with observations from three-layer, four-layer Sn,P;
nanosheets, and bulk Sn,P; (Figs. S17-S19 in the ESM), and align
with reported data on SnP; electrodes. The typical
charge-discharge curves of bilayer Sn,P; electrodes, presented in
Fig. 4(b), show distinct plateaus at ~ 0.5 and 1.0 V during the
charging process. These plateaus correlate with the CV analysis
and mirror the behavior observed in three-layer, four-layer Sn,P;
nanosheets, and bulk Sn,P; (Figs. S20-S22 in the ESM),
underscoring the high reversibility of the bilayer Sn,P; electrodes.
This high reversibility is attributed to the electrodes’ unique

@ Springer | www_.editorialmanager.com/nare/default.asp
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Figure5 (a) The comparison in electrochemical performance between our bilayer Sn,P; nanosheets and some as-reported Sn,P; anode materials. (b) CV curves of
bilayer Sn,P; nanosheets at the scan rate of 0.1 mV-s™. (c) Nyquist plots of bilayer, three-layer, and four-layer Sn,P; nanosheets electrodes, respectively. (d) The

relationship curve between Z,. and w™* in the low-frequency region.

ultrathin layered structure, which plays a crucial role in enhancing
their electrochemical performance.

To further elucidate the reasons behind the exceptional
electrochemical ~performance of bilayer Sn,P; electrodes,
alternating-current (AC) impedance spectroscopy was performed
after 500 cycles under consistent testing conditions. The Nyquist
plot, as depicted in Fig.5(c), was analyzed using a modified
Randles equivalent circuit model (Fig.S23 in the ESM). This
model incorporates a semicircle in the high-frequency range,
representing the charge-transfer kinetic-controlled region, and a
straight line in the low-frequency range, indicative of the mass
transfer-controlled Warburg region.

The bilayer Sn,P; electrodes exhibited a remarkably small R
value of 8.7 Q, much lower than those observed for three-layer
Sn,P; nanosheets (14.1 Q), four-layer Sn,P; nanosheets (16.0 Q2),
and bulk Sn,P; (19.9 Q). Besides, from the relationship between
Z. and w™”, it can be concluded that bilayer Sn,P; possesses a fast
Li* diffusion than those of three-layer Sn,P; and four-layer Sn,P;
anodes (Fig.5(d)). This finding underscores the enhanced
electrochemical performance of bilayer Sn,P; electrodes compared
to their thicker counterparts and bulk material, suggesting that the
ultrathin bilayer structure substantially improves electrical
conductivity. The substantially lower charge-transfer resistance of
the bilayer Sn,P; electrodes highlights their superior
electrochemical kinetics, which is likely a key factor contributing
to their excellent performance. This enhanced conductivity and
reduced impedance facilitate more efficient lithium-ion transport
and electron flow during the charge-discharge cycles, accounting
for the high capacity, stability, and longevity observed in these
electrodes. Thus, it is reasonable to conclude that the ultrathin
bilayer Sn,P; nanosheets markedly enhance the -electrode’s
electrical conductivity, playing a crucial role in their good
electrochemical performance.

4 Conclusions

In conclusion, we have successfully synthesized ultrathin bilayer

Sn,P; nanosheets via space-confined topochemical transformation
strategy. By carefully adjusting the rolling number during the
processing of Sn/Al foils, the number of Sn,P; layer can be
precisely controlled. Remarkably, the bilayer Sn,P; nanosheets
display an exceptional initial capacity of 1088 mAh-g" as well as
outstanding cycle life, maintaining capacity without fading more
than 3000 cycles. By precisely controlling the layer thickness and
ensuring nanoscale uniformity, we enhance the lithium cycling
performance of Sn,P;, marking a significant advancement in the
development of its practical application. These findings illuminate
the profound potential of 2D nanomaterials in paving the way for
the next generation of energy storage solutions, offering new
perspectives on enhancing the efficiency and durability of
electrochemical storage systems.
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