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ABSTRACT: Ion migration in perovskite solar cells (PSCs) significantly impacts their
photoelectric performance and physicochemical stability. Existing research has predom-
inantly focused on inhibiting ion migration through chemical strategies or observing it under
open-circuit or short-circuit conditions. This focus has led to a limited theoretical
understanding and control of ion migration under practical conditions, constraining advances
in long-term stability. In this study, we introduce a novel variable-load transient photoelectric
technique (VL-TPT) to investigate ion migration dynamics in PSCs under practical
operating conditions. Results show that ion accumulation correlates with photogenerated
carrier concentration under open-circuit conditions. During operation, ion accumulation
decreases with reduced load, because charge is transferred to the external circuit, leading to a
reduction in carrier concentration within the device. An unusual increase in interface ions is
observed at low loads due to interactions between charges accumulated in the potential well and ions. Introducing FA+ in
MA0.75FA0.25PbI3 devices suppresses ion migration in the open-circuit state but accelerates interface ion buildup under operating
conditions. These findings provide valuable insights for enhancing device stability and performance.

Over the past decades, organic−inorganic hybrid metal
halide perovskite solar cells (PSCs) have garnered

significant attention, with power conversion efficiency rapidly
increasing from 3.8% to 26.7%.1,2 This interest stems from their
exceptional optoelectronic properties, including long free carrier
lifetimes, excellent charge carrier diffusion lengths, and low
defect state densities.3−5 However, ion migration severely
impacts the operational stability of PSCs, limiting their practical
application. Ion migration refers to the movement and
redistribution of ions within PSCs under external stresses such
as light, heat, or electric fields, leading to current−voltage (J−V)
hysteresis6 and unstable power output.7,8

Current research focuses on chemical strategies to suppress
ion migration, including perovskite compositional engineering,
ligand engineering, additive engineering, and perovskite/charge
transport layer interface engineering.9,10 Doping pure methyl-
ammonium perovskite with formamidinium or cesium ions
raises the ionmigration barrier, thereby reducing ionmigration.9

Additives like lead thiocyanate increase perovskite crystal size
and decrease grain boundaries, thereby reducing the number of
migrating ions.11 Modifying the perovskite/electron transport
layer interface with fullerene derivatives passivates both anionic
and cationic defects, lessening the impact of ion migration on
device performance.10,12 Despite these advances, methods
remain empirical, lacking a systematic theoretical foundation
and clear guidelines for controlling ion migration to improve
long-term device stability.

An in-depth understanding of ion dynamics in PSCs is
essential and witnessed notably advancements in recent years for
interpreting their operational mechanisms and optimizing their
performance, yet the intricacies of ion migration mechanisms
under practical operating conditions remain elusive.6,13−18 Most
studies on photoelectric conversion mechanisms focus on
extreme conditions, such as “open-circuit” or “short-circuit”
states, where the device outputs no power.19 Current methods
for assessing steady-state efficiency, which utilizes continuous
illumination and extended bias to mimic operating condi-
tions,19−21 may not accurately represent the true carrier and ion
dynamics observed under practical operating conditions, such as
those involving variable loads and illumination. Moreover,
several methods are available to explore and characterize ion
migration, including time-of-flight mass spectrometry,22,23

photoluminescence microscopy,24 and electrochemical impe-
dance spectroscopy.6,18,25,26 However, the overlapping ion
migration processes with different time scales (e.g., iodide ions
on the microsecond scale, methylammonium ions on the second
scale)27,28 and multiple photoelectric conversion processes17

(e.g., charge transfer and recombination) complicate the
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analysis of ion migration mechanisms under operating
conditions. Therefore, research into ion migration dynamics
across a broad time domain, with differentiation of ion types, is
crucial for understanding ion-carrier interactions and improving
long-term device performance.
Herein, we successfully distinguished the signals of free

carriers from those of ion-related carriers under operating
conditions utilizing the newly developed variable-load transient
photoelectric technique (VL-TPT). Under operating condi-
tions, the working electric field decreases interfacial carrier
concentration by driving charge transfer to the external circuit,
which reduces accumulated ions. Simultaneously, charges
accumulated in the interfacial potential well attract additional
ions to the interface. The introduction of FA+ suppresses overall
ion migration under open-circuit conditions, leading to
increased ion accumulation.
To investigate ion migration mechanisms in PSCs under

operating conditions, we employed a custom VL-TPT for
quantitative analysis. This technique evolved from the circuit-
switched transient photoelectric technique (cs-TPT) used in
previous work,29 with experimental details provided in the
experimental section. As illustrated in Figure 1a, the photo-
voltaic device is connected in parallel with a CMOS switch and
an oscilloscope. The time sequence of the VL-TPT system is
controlled by a time delay generator, enabling rapid switching
between the “short-circuit” state and “open-circuit” state/
operating conditions. Based on the above setup, the VL-TPT
experiment can be conducted in variable time delay mode and
fluctuating load mode (Figures 1b and 1c), which are used to
investigate ion migration in the device under open-circuit and
operating conditions, respectively.

As the device is under variable time delay modes (under
“open-circuit” state), the dynamics process consists of four steps
(Figure 1b):

(1) The device is continuously illuminated until photo-
generated voltage (Vph) reaches its maximum.

(2) After removing the illumination, Vph decay is recorded in
real time, similar to open-circuit voltage decay (OCVD)
measurements.

(3) At a specific time delay in the OCVD process, the circuit
switches from an “open-circuit” to a “short-circuit” state,
resulting in a sudden drop in Vph. In this process, all free
photogenerated carriers will be extracted to the external
circuit.

(4) When the circuit switches back to an “open-circuit” state,
a peculiar Vph recovery phenomenon is revealed, as a
distinctive feature of the VL-TPT curve.

In previous work, the Vph recovery signal was attributed to the
polarization-induced trap state model (PITS, see ref 26 and
Figure S1), where photogenerated carriers trapped by ions
accumulated at the interface are released and transferred to the
charge transport layer. Therefore, the peak of the voltage
recovery signal can reflect the amount of ion accumulation at the
interface. This model has been utilized to investigate ion
migration across different crystal facets,30 evaluate the effects of
NH4PF6-treated fluorine-doped tin oxide (FTO) substrates on
ion migration,31 and analyze how ion migration impacts
hysteresis.32

On the other hand, as the device is under operating conditions
with fluctuating load mode and at the same time delay (0 s), the
dynamic process consists of three steps (Figure 1c):

Figure 1. (a) Schematic illustration of the VL-TPT setup. Representative time sequences of the VL-TPT experiment working in the variable time delay
mode (b) and the fluctuating load mode (c). (d, e) Exemplary VL-TPT profile of PSCs in the variable time delay mode (panel (d)) and the fluctuating
load mode (panel (e)).
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(1) The device is illuminated while a load is connected across
its terminals, with the load size adjusted to change the
final stable operating voltage (Vapp).

(2) When switching from operating conditions to “short-
circuit” states and removing the illumination and load, a
rapid decay of the voltage is observed due to free charge
extraction.

(3) After returning to the “open-circuit” state, the VL-TPT
dynamics are measured under different loads.

Beyond the upright configuration explored in this work, this
approach is considered applicable for investigating ionmigration
dynamics in other perovskite solar cell structures, including
inverted and dye-sensitized devices. Moreover, comparative
experiments (Figure S2) on silicon-based solar cells with no ion
migration (showing no voltage recovery) and dye-sensitized
solar cells with ion migration (showing voltage recovery),
further validate the general applicability of our method for
studying ion migration dynamics in diverse devices.
Figures 1d and 1e display typical experimental VL-TPT

curves for PSCs corresponding to Figures 1b and 1c,
respectively. We define two key parameters:

(1) Vex, the Vph value at the moment of switching from the
“open-circuit” state/operating conditions to the “short-
circuit” state (marking the start of short-circuit charge
extraction).Vex encompasses contributions from both free
charges and ion-trapped charges and can reflect the carrier
concentration in the device.

(2) Vr‑oc/Vr‑app, the peak of the voltage recovery signal after
returning to the “open-circuit” state. Vr represents the
amount of ion accumulation at the interface and can
reflect the concentration of ion-captured carriers. This
lays the foundation for the quantitative analysis of carrier-
ion interactions under actual operating conditions.

Before examining the operating conditions, we undertook a
comprehensive study of ion migration in the device while in an
“open-circuit” state. We selected the classic MAPbI3 device, as
shown in Figure 2a, which achieves an efficiency of 21.31%. The
OCVD experiment was conducted first as a foundation for the
variable delay mode VL-TPT experiment. As displayed in Figure
2b, two distinct voltage decay processes are observed from the
OCVD trace, with a dramatic drop of Vph from the maximum
value to ∼0.87 V within the first 100 ms and a long-lived tail
extending for tens of seconds. The rapid decay process is
attributed to the recombination of free charges, while the
ultraslow OCVD response observed at long delay times (Vph <
0.87 V) remains a topic of debate. Some attribute it to
electrostatic potential relaxation from ionic accumulation,13,33,34

while others suggest it results from hindered charge transfer due
to band bending.15,35 Despite this uncertainty, we can consider
that this part is associated with the recombination of ion-related
charges.
Next, we utilized the VL-TPT technique in variable time delay

mode to investigate ion migration during the OCVD process
(carrier concentration decay process). As illustrated in Figure
2c, at high voltages (Vex > 0.87 V), Vr‑oc reaches a stable level

Figure 2. (a) The J−V curves of the MAPbI3 device. (b) The OCVD profile of the MAPbI3 device. Inset: a zoomed-in scale of OCVD kinetics of the
device within the first 4 ms, showing that the steep decay changes to the gradual one at Vc = 0.87 V (see the text for details). (c) Vr‑oc variation as a
function of Vex for the MAPbI3 device. Vr‑oc increases linearly and then saturates at 0.87 V. (d)-(f) The energy band structure of the MAPbI3 device
under an “open-circuit” state at photovoltage (Vph) values of 1.1 V (d), 0.6 V (e), and 0.2 V (f), respectively. As charge recombination occurs, the
voltage decreases and the quantity of ions accumulated at the surface reduces.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c03068
J. Phys. Chem. Lett. 2024, 15, 11903−11910

11905

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c03068/suppl_file/jz4c03068_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03068?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03068?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03068?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03068?fig=fig2&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c03068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Vr‑oc, max = 0.87 V), indicating that during the rapid
recombination of free charges, ions accumulated at the interface
under the influence of the photoelectric field remain unmoved,
as their migration time scale (ms−s) greatly exceeds that (μs) of
charge recombination.27,28 In contrast, at lower voltages (Vex <
0.87 V), Vr‑oc progressively decreases with a reduction in Vex,
displaying a slope approximately equal to 1 (Vex = Vr‑oc). This
process demonstrates a direct correlation between the
concentration of ion-related carriers and the amount of ions
accumulated at the interface. After the recombination of free
charges, ions migrate from the interface to the bulk phase,
releasing the charges trapped by the ions into the conduction
band, leading to recombination. The above conclusions further
validate the PITS model, offering insights into the interaction
model of ions and carriers under open-circuit conditions.
Under illumination, electrons and holes are transported to the

electron transport layer (ETL) and hole transport layer (HTL),
respectively, and the splitting of the Fermi level generates a
stable photovoltage (Vph).Within the perovskite layer, under the
action of the photoelectric field, cationsmigrate toward the ETL,
while anions move toward the HTL.13,35−37 Ion accumulated at
the interfaces traps charges electrostatically, forming polar-
ization-induced trap state and altering the energy band structure,
as shown in Figure 2d. When illumination is removed, Vph
decays due to charge recombination, and the quasi-Fermi levels

(EFn and EFp) converge toward the equilibrium Fermi level
(EF0). At this point, the ions have not yet moved, and the
amount of ions (Vr‑oc) at the interface remains constant,
unaffected by the decrease in carrier concentration (Vex). After
the rapid recombination of free charges, ions begin to migrate
from the interface back to the bulk, releasing the trapped
charges. This portion of the charge returns to the conduction
band, subsequently leading to recombination. At this stage, the
accumulation of ions (Vr‑oc) at the interface diminishes as the
carrier concentration (Vex) decreases, as depicted in Figures 2e
and 2f, showing photovoltage decay to 0.6 and 0.2 V,
respectively.
Subsequently, we begin the research on ion migration under

operating conditions using the VL-TPT technique at fluctuating
load mode. Under a certain load and illumination, the operating
voltage of the device gradually rises to a stable value (Vapp),
which is effectively adjusted by changing the load resistance. As
shown in Figure 3a, Vapp increases with the load size until
eventually approaching open-circuit photovoltage. Figure S3
shows typical VL-TPT curves for MAPbI3 PSCs with load
resistances of 2400 Ω and 800 Ω, respectively. Unlike the
varying time delay mode, in this case, the time delay is fixed at
zero, thereby Vex is equal to Vapp, indicating charge extraction is
performed while the operating voltage is stable. After multiple
sets of VL-TPT experiments under different loads, Figure 3b

Figure 3. (a) Variation of Vapp with load for the MAPbI3 device, showing that Vapp increases with the load and approaches Voc when the load becomes
sufficiently large. (b) Vr‑app variation as a function of Vex for the MAPbI3 device. Vr‑app increases with Vapp and remains unsaturated. (c) The overshoot
voltage curves at different Vapp. The inset illustrates the microsecond-scale process, where charges trapped in potential wells are released to the
transport layers. (d−f) The energy band structure under operating conditions of the MAPbI3 device at applied voltage (Vapp) values of 1.1 V (panel
(d)), 0.6 V (panel (e)), and 0.2 V (panel (f)), respectively. As the load decreases, the working electric field increases, causing the energy bands to tilt
and the potential wells to enlarge, which results in a reduction of surface-accumulated ions. (See the text for details.)
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shows that Vr‑app decreases as Vex decreases, indicating that ion
accumulation in the device diminishes with a reduction in load.
This occurs because the external electric field (Eapp) generated
by the load induces band tilting,35,38 driving charge transport to
the external circuit thereby reducing the carrier concentration
within the device. Under the condition that the total amount of
photogenerated carriers remains constant, as the load decreases,
the increase in Eapp leads to a reduction in the concentration of
residual carriers interacting with ions within the device.
Additionally, the operating voltage output (Vapp or Vex) is

influenced by both free charges and ion-trapped charges,
resulting in the relationship Vex (Vapp) > Vr‑app, which is
straightforward to understand. However, surprisingly, at low Vex,
we observe the occurrence of Vex < Vr‑app. This phenomenon
suggests that, under certain small load conditions, some charges
within the device are trapped with interfacial ions but do not
contribute to the voltage output. The formation of an interfacial
potential well occurs when band bending and band tilting
simultaneously take place at the interface.38−40 This potential
well is likely the primary reason for this phenomenon, as charges
tend to accumulate in the well during transport, allowing for
interaction with interfacial ions. The operating voltage over-
shoot experiment further confirms the above speculation. As
shown in Figure 3c, when both the illumination and load are
removed, a sharp voltage spike occurs as the device stabilizes at
its Vapp. Many researchers have conducted theoretical and
experimental studies on the phenomenon of voltage overshoot,
indicating that it results from the transfer of charges that were
previously trapped in the potential well to the HTL/ETL.41−44

The insert of Figure 3c shows that this process occurs at a subtle
scale, precisely aligning with the time scale of charge transfer. In
addition, the magnitude of the voltage overshoot increases as

Vapp decreases, indicating that the potential wells can store more
charges at a lower load. For example, as shown in Figure 3b,
when Vex is at 0.1 V, ion accumulation under operating
conditions (Vr‑app) can exceed that in the “open-circuit” state
(Vr‑oc).
Based on the above analysis, we can establish an ion-carrier

interactions model under operating conditions. After the device
is illuminated, photogenerated carriers are generated within it.
Meanwhile, the load connected across the terminals of the
device creates Eapp directed from the ETL to the HTL. which
drives charge transport to the external circuit. The remaining
charges within the device cause the Fermi level to split, resulting
in a stable Vapp. When the load is sufficiently high, the system
approaches open circuit conditions, under the influence of the
photoelectric field, with cations accumulating in ETL and anions
HTL, forming a polarization-induced trap state as shown in
Figure 3d. As the load decreases, the Eapp strengthens, causing a
reduction in the concentration of carriers polarized with the ions
at the interface, ultimately resulting in both cations and anions
gradually migrating toward the bulk phase. Consequently, the
accumulation of interfacial ions decreases as the load diminishes,
as illustrated in Figures 3d−f, with examples provided at Vapp =
1.1, 0.6, and 0.2 V, respectively. At the same time, the
accumulation of ions at the interface induces band bending,
and as the bands tilt, an interfacial potential well is established. A
fraction of the charges become trapped within this potential well,
forming polarization-induced trap states with the ions, thereby
augmenting the relative concentration of interfacial ions. This
accumulation effect of the potential well on the charges is
particularly pronounced under conditions of relatively low load.
The Eapp and the potential well significantly alter the mechanism

Figure 4. (a) Complete OCVD profiles of the MAPbI3 and MA0.75FA0.25PbI3 devices. (b) Vr‑oc variation as a function of Vex for devices, showing
saturation voltages of 0.87 V for MAPbI3 and 0.79 V for MA0.75FA0.25PbI3. (c) Vr‑app variation as a function of Vex (Vapp) for devices. (d) The overshoot
voltage curves of devices at Vapp = 0.2 V. (e) Band structures of MAPbI3 and MA0.75FA0.25PbI3 devices with varying potential well sizes.
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of ion-carrier interactions under operating conditions compared
to open-circuit conditions.
FA+ is frequently employed for compositional optimization

and can suppress ion migration,45,46 thus we also conducted
experiments on MA0.75FA0.25PbI3 devices. The basic character-
ization of the devices is provided in Figures S4−S8. First, under
open-circuit conditions, as shown in Figure 4a, devices exhibit
similar OCVD curve trends, each showing two distinct
photovoltage decay processes. Notably, the MA0.75FA0.25PbI3
device exhibits slower voltage decay. The spatial steric effect of
FA+ effectively slows down the ion migration rate,47,48 leading to
an impediment in the recombination of ion-related charges.
Figure 4b further quantifies this, showing Vr,max of 0.87 V for
MAPbI3 and 0.79 V for MA0.75FA0.25PbI3, respectively,
indicating that fewer ions accumulate at the interface in the
MA0.75FA0.25PbI3 device. Thus, introducing a moderate amount
of FA+ slows ion migration and reduces interfacial ion
accumulation.
Next, we investigate the ion migration behavior of the two

devices under operating conditions. As shown in Figure 4c, the
Vr-app−Vapp curves reveal that, except when close to an open
circuit (at high Vex), the Vr‑app of MA0.75FA0.25PbI3 is lower than
that of MAPbI3. In most cases, when Vex is equal, the Vr‑app of
MA0.75FA0.25PbI3 is greater than that of MAPbI3. This indicates
that when the devices output the same power, MA0.75FA0.25PbI3
accumulates more ions at the interface during operation.
Evidently, under operating conditions, FA+ accelerates ion
accumulation at the device interfaces. Based on the ion
migration model for operation conditions, this effect is most
likely due to the influence of potential wells. To verify this
hypothesis, we performed a voltage overshoot experiment on
both devices for comparison. As shown in Figure 4d, at Vapp of
0.2 V, the MA0.75FA0.25PbI3 increases the overshoot voltage,
suggesting that the MA0.75FA0.25PbI3 device experiences greater
charge accumulation in the potential wells, interacting more
with the ions, as depicted in Figure 4e.
Generally, FA+ regulates the types of mobile ions, altering the

migration dynamics within the device. As shown in Figure S9,
the open-circuit voltage build-up (OCVB) measurements reveal
a slower photovoltage rise on the millisecond time scale for the
MA0.75FA0.25PbI3 device,

49 indicating FA+ significantly inhibits
cation migration. Therefore, we hypothesize that the reason for
the greater accumulation of ions in the MA0.75FA0.25PbI3 device
under operating conditions is that the increased proportion of
easily migratory iodide ions and vacancies enhances doping near
the transport layers,44 leading to more pronounced band
bending and charge accumulation. In addition, our findings
provide valuable insights for improving the devices’ long-term
stability. By understanding the time scales and mechanisms of
ion migration, we can further optimize the material components
to reduce ion-related degradation, which is crucial for enhancing
long-term stability.
In summary, this study employs a customized variable load

transient photovoltaic technique (VL-TPT) to investigate the
ion migration mechanisms in PSCs under operating conditions.
Experimental results indicate a significant direct correlation
between the concentration of photogenerated carriers and ion
accumulation under open-circuit conditions. Under actual
operating conditions, the amount of ion accumulation decreases
as the load is reduced. This phenomenon is because the charge is
derived from transport to the external circuit, thereby lowering
the carrier concentration within the device. Furthermore, the
observed abnormal increase in interface ions under low-load

conditions arises from the interaction between charges
accumulated in the interface potential well during the transport
process and ions. Studies on theMA0.75FA0.25PbI3 device further
reveal that the introduction of FA+ effectively suppresses ion
migration in the open-circuit state but accelerates interface ion
accumulation during operating conditions. This study provides a
comprehensive analysis of ion migration under realistic
operating conditions, offering valuable insights for optimizing
device composition and enhancing long-term stability.
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