您所在的位置: 首页» English

Publications

012、Duan Z, Li M, Mwenya T, et al. Morphology Optimization of Silver Nanoparticles Used to Improve the Light Absorption in Thin-Film Silicon Solar Cells[J]. Plasmonics, 2017:1-7.||PDF

011、Yue S, Liu K, Xu R, et al. Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(12): 2570-2578.||PDF

010、Wu G, Chen J, Guo Y, et al. Freestanding Sodium-Ion Batteries Electrode Using Graphene Foam Coaxially Integrated with TiO 2 Nanosheets[J]. Journal of the Electrochemical Society, 2017, 164(13):A3060-A3067.||PDF

009、Bai F, Zhang Y, Duan Z, et al. Broadband antireflection property of silicon nanocone arrays with porous sidewalls fabricated by Ag-catalyzed etching[J]. AIP Advances, 2017, 7(9):095006.||PDF

008、Yingying Sun, Lin Chen, Jun Lin, Peng Cui, Meicheng Li et al. Thermal conductivity of epoxy composites filled by thermally reduced graphite oxide with different reduction degree[J]. Journal of Composite Materials, 2017, 51(12):002199831769613.||PDF

Paper 2018

017、Elseman A M, Sharmoukh W, Sajid S, et al. Superior Stability and Efficiency Over 20% Perovskite Solar Cells Achieved by a Novel Molecularly Engineered Rutin–AgNPs/Thiophene Copolymer[J]. Advanced Science, 2018: 1800568.||PDF

016、Lehao Liu, Meicheng Li, Jing Lyu, et al. Facile and Green Preparation of Three-Dimensionally Nanoporous Copper Films by Low-Current Electrical Field-Induced Assembly of Copper Nanoparticles for Lithium-Ion Battery Applications[J]. Journal of Materials Engineering and Performance, 2018, 27(9): 4680-4692.||PDF

015、Wenming Mei, Cai Li, Libin Yang, Chunlai Li, Wenkang Xi, Saif Mubaarak Abdulrahman Abd,et al.Influence of grid connection and countermeasures in different photovoltaic reactive power control methods[J]. 中国测试, 2018, 44(9).||PDF

014、Yingfeng Li, Mengqi Cui, Hejin Yan,et al. Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5(M=V,Ta) Predicted by First Principle Calculations[J]. Materials, 2018, 11(10): 1809.||PDF

013、Chen L, Gao Z, Zheng Y, et al. 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer[J]. Solar Energy, 2018, 174: 549-555.||PDF

012、Zhiqiang D, Meicheng L, Chonto T M. Effective Light Absorption Using the Double-sided Pyramid Gratings for Thin-Film Silicon Solar Cell[J]. Nanoscale Research Letters, 2018, 13(1): 192.||PDF

011、Sajid S, Elseman A M, Huang H, et al. Breakthroughs in NiO x-HTMs towards stable, low-cost and efficient perovskite solar cells[J]. Nano Energy, 2018. ||PDF

010、Dong Wei, Fusheng Ma, Rui Wang, et al. Ion-Migration Inhibition by the Cation–π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2018: 1707583. ||PDF

009、Jinhui Nie, Zewei Ren, Jiajia Shao, Chaoran Deng, Liang Xu, Xiangyu Chen, Meicheng Li, Zhong Lin Wang. Self-Powered Microfluuidic Transport SystemBased on Triboelectric Nanogenerator andElectrowetting Technique[J], ACS Nano,  2018, 12(2): 1491-1499. ||PDF

008、Nian-Wu Li, Xinyu Du, Ji-Lei Shi, Xiuling Zhang, Wei Fan, Jiaona Wang, Shuyu Zhao, Yuebo Liu, Weihua Xu, Meicheng Li, Yu-Guo Guo, Congju Li. Graphene@hierarchical meso- / microporous carbon for ultrahigh energy density lithium-ion capacitors[J], Electrochimica Acta, 2018: 1801606. ||PDF

007、Chaoran Deng, Wei Tang, Long Liu, Baodong Chen, Meicheng Li, Zhong Lin Wang. Self‐Powered Insole Plantar Pressure Mapping System[J]. Advanced Functional Materials, 2018: 1801606. ||PDF

006、Elseman A M, Shalan A E, Sajid S, et al. Copper-Substituted Lead Perovskite Materials Constructed with Different Halides for Working (CH3NH3) 2CuX4-Based Perovskite Solar Cells from Experimental and Theoretical View[J]. ACS applied materials & interfaces, 2018, 10(14): 11699-11707. ||PDF

005、Sajid S, Elseman A M, Ji J, et al. Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells[J]. Nano-Micro Lett, 2018, 10(3):51. ||PDF

004、Ikhmayies, Shadia, Li Y, Luo Y, Li M, et al. Advances in Silicon Solar Cells[M]. Springer, 2018. ||PDF

003、Chu L, Ding L, Wang C, et al. Unusual Electrical Transport Driven by the Competition between Antiferromagnetism and Ferromagnetism in Antiperovskite Mn3Zn1-xCoxN[J]. Materials, 2018, 11(2): 286. ||PDF

002、Li Y, Liu W, Luo Y, et al. Oxidation of silicon nanowire can transport much more light into silicon substrate[J]. Optics Express, 2018, 26(2): A19-A29. ||PDF

001、Sajid, A M Elseman, Jun Ji, et al. Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells[J]. Chinese Physics B, 27(1): 17305-017305. ||PDF


Paper 2017

007、Yingfeng Li,Younan Luo, Wenjian Liu,et al.Specific distribution of the light captured by silver nanowire[J]Opt. Express ,25(8), 9225-9231 (2017).||PDF

006、Wang T, Wu G, Chen J, et al. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect[J]. Renewable and Sustainable Energy Reviews ,70 (2017) 1178–1188.||PDF

005、Peng Cui, Dong Wei, Jun Ji,et al.Highly Efficient Electron-Selective Layer Free Perovskite Solar Cells by Constructing Effective p–n Heterojunction[J]Solar. RRL, 2017,1(2) :1600027.||PDF

004、Jiewei Chen, Gaoxiang Wu, Tianyue Wang,et al.Carrier Step-by-Step Transport Initiated by Precise Defect Distribution Engineering for Efficient Photocatalytic Hydrogen Generation[J]ACS Appl. Mater. Interfaces 2017, 9, 4634?4642.||PDF

003、Jiewei Chen, Mengqi Cui , Gaoxiang Wu ,et al.Fast growth of large single-crystalline graphene assisted by sequential double oxygen passivation.[J]Carbon, 116 (2017) 133-138.||PDF

002、Bing Jiang, Han Dai, Qiang Zhao, et al.The path of mass transfer during Au thin filmassisted chemical etching by designed surface barriers.[J] RSC Advances,2017, 7, 11522–11527.||PDF

001、Zhirong Zhang,Meicheng Li, Wenjian Liu,et al. CH3NH3PbI3 converted from reactive magnetron sputtered PbO for large area perovskite solar cells[J].Solar Energy Materials & Solar Cells,163 (2017) 250–254.||PDF


Paper 2016

016、Tianyue Wang, Jiewei Chen, Gaoxiang Wu, et al. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite[J].Journal of Semiconductors , 2017, 38(1).||PDF

015、Wei D, Ji J, Song D, et al. A TiO2 Embedded Structure for Perovskite Solar Cells with Anomalous Grain Growth and Effective Electron Extraction[J]. Journal of Materials Chemistry A, 2017, 5, 1406–1414.||PDF

014、Xiaodan Li, Gaoxiang Wu, Xin Liu, et al. Orderly integration of porous TiO 2 (B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries[J]. Nano Energy, 2017, 31:1-8.||PDF

013、Wang T, Chen J, Wu G, et al. Optimal design of efficient hole transporting layer free planar perovskite solar cell[J]. Science China Materials, 2016:1-7.||PDF

012、Xiaodan Li, Gaoxiang Wu, Jiewei Chen, et al. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: unusual electrochemical behaviors and ascending capacities[J]. Applied Surface Science, 2017, 392, 297-304.||PDF

011、Dai H, Wang T Y, Li M C. Spotlight on ultrasonic fracture behaviour of nanowires: their size-dependent effect and prospect for controllable functional modification[J]. RSC Advances, 2016, 6.||PDF

010、Li Yingfeng, Li Meicheng, Li Ruike, Fu Pengfei, Wang Tai, Luo Younan, Mbengue Joseph Michel, Trevor Mwenya, Exact comprehensive equations for the photon management properties of silicon nanowire[J]. Scientific Reports, 2016, 6: 24847.||PDF

009、Yingfeng Li, Luo Yue, Younan Luo, Wenjian Liu, Meicheng Li. Light harvesting of Silicon Nanostructure for Solar Cells Application[J]. Optics Express, 2016, 24(14): A1075||PDF

008、Chu Lihua, Li Meicheng, Wang Yu, Li Xiaodan, Wan Zipei, Dou Shangyi, Chu Yue. Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability[J]. Journal of Nanomaterials, 2016, 2016 6.||PDF

007、Dandan Song, Dong Wei, Peng Cui, Meicheng Li, Zhiqiang Duan, Tianyue Wang. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4, 6091-6097.||PDF

006、Mwenya T, Fan H, Dai H, et al. The Detailed Evolution of Carbon Spheres by Hydrothermal Method[J]. International Journal of Photoenergy, 2016, 2016:1-5.||PDF

005、Song Dandan, Cui Peng, Wang Tianyue, Xie Bixia, Jiang Yongjian, Li Meicheng, Li Yaoyao, Du Sheng, He Yue, Liu Zhuohai, Mbebgue Joseph Michel, Bunchy TiO2 hierarchical spheres with fast electron transport and large specific surface area for highly efficient dye-sensitized solar cells, Nano Energy, 2016, 23 122-128.||PDF

004、Dandan Song, Jun Ji, Yaoyao Li, et al. Degradation of organometallic perovskite solar cells induced by trap states[J]. Applied Physics Letters, 2016, 108(9):6050.||PDF

003、Li M, Li Y, Liu W, et al. Metal-assisted chemical etching for designable monocrystalline silicon nanostructure[J]. Materials Research Bulletin, 2016, 76:436-449.||PDF

002、Li Y, Fu P, Li R, et al. Ultrathin Flexible Planar crystalline-Silicon/Polymer Hybrid Solar Cell with 5.68% Efficiency by Effective Passivation[J]. Applied Surface Science, 2016, 366:494-498.||PDF

001、Wei D, Wang T, Ji J, et al. Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface[J].Journal of Materials Chemistry A, 2016, 4(5):1991-1998.||PDF


Paper 2015

024、Jiang B, Li M, Liang Y, et al. Etching anisotropy mechanisms lead to the morphology-controlled silicon nanoporous structures by metal assisted chemical etching[J]. Nanoscale, 2016, 8(5): 3085-3092.||PDF

023、Duan Z, Li M, Mwenya T, et al. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell[J]. Applied Optics, 2016, 55(1): 117-121.||PDF

022、Zhang Z, Yue X, Wei D, et al. DMSO-based PbI2 precursor with PbCl2 additive for high efficient perovskite solar cells fabricated at low temperature[J]. RSC Advances, 2015, 5(127): 104606-104611.||PDF

021、Li R, Li M, Li Y, et al. Co-catalytic mechanism of Au and Ag in silicon etching to fabricate novel nanostructures[J]. RSC Advances, 2015, 5(117):96483-96487.||PDF

020、Li X, Feng Y, Li M, et al. Smart Hybrids of Zn 2 GeO 4 Nanoparticles and Ultrathin g-C 3 N 4 Layers: Synergistic Lithium Storage and Excellent Electrochemical Performance[J]. Advanced Functional Materials, 2016, 25(44):6858-6866.||PDF

019、Sun Q, Wang L, Wang W, et al. Growth and Characterization of InAs1–x Sb x with Different Sb Compositions on GaAs Substrates[J]. Chinese Physics Letters,2015, 32(10):106801S.||PDF

018、Song D, Cui P, Wang T, et al. Managing Carrier Lifetime and Doping Property of Lead Halide Perovskite by Post-annealing Processes for Highly Efficient Perovskite Solar Cells[J]. Journal of Physical Chemistry C, 2015, 119(119):22812-22819.||PDF

017、Cui P, Xie B, Li X, et al. Anatase/TiO2-B hybrid microspheres constructed by ultrathin nanosheets: facile synthesis and application for fast lithium ion storage[J]. Crystengcomm, 2015, 17(41):7930-7937.||PDF

016、Zhang Z, Wei D, Xie B, et al. High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process[J]. Solar Energy, 2015, 122: 97-103.||PDF

015、Cui P, Fu P, Wei D, et al. Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells[J]. RSC Advances, 2015, 5(92): 75622-75629.||PDF

014、Li Y, Li M, Fu P, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells[J]. Scientific Reports, 2015, 5.||PDF

013、Li Y, Li M, Li R, et al. Linear length-dependent light-harvesting ability of silicon nanowire[J]. Optics Communications, 2015, 355: 6-9.||PDF

012、Yue Y U, Meicheng L I, Chu L, et al. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells[J]. Journal of the Chinese Ceramic Society, 2015, 2(02):65-68.||PDF

011、Chu L, Li M, Li X, et al. High performance NiO microsphere anode assembled from porous nanosheets for lithium-ion batteries[J]. RSC Advances, 2015, 5:49765-49770.||PDF

010、Bai F, Li M, Fu P, et al. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering[J]. APL Materials, 2015, 3(5): 056101.||PDF

009、Ding R, Dai H, Li M, et al. Special P – N Junction Photocatalytic NiO/Ag2S Nanocomposite Synthesized by Hydrothermal Method[J]. Nanoscience & Nanotechnology Letters, 2015, 7:387-391.||PDF

008、Dai H, Ding R, Li M, et al. Abnormal thermal effects on the surface plasmon resonance of Ag nanoparticles on the surface of silicon[J]. Thin Solid Films, 2015, 584: 378-381.||PDF

007、Li Y, Li M, Li R, et al. Method to determine the optimal silicon nanowire length for photovoltaic devices[J]. Applied Physics Letters, 2015, 106(9): 091908.||PDF

006、Song D, Chen Z, Cui P, et al. NH3-treated WO3 as low-cost and efficient counter electrode for dye-sensitized solar cells[J]. Nanoscale Research Letters, 2015, 10(1): 1-6.||PDF

005、Song D, Cui P, Zhao X, et al. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells[J]. Nanoscale, 2015, 7(13): 5712-5718.||PDF

004、Li-Hua C, Cong W, Ying S, et al. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chinese Physics Letters, 2015, 32(4): 047501.||PDF

003、Li Y, Li M, Song D, et al. Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells[J]. Nano Energy, 2015, 11: 756-764.||PDF

002、Li R, Li M, Li Y, et al. Co-catalytic mechanism of Au and Ag in silicon etching to fabricate novel nanostructures[J]. RSC Advances, 2015.||PDF

001、Li X, Li W, Li M, et al. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2 nanosheet nanocomposite and its synergistic lithium storage performance[J]. Journal of Materials Chemistry A , 2015, 3:2762-2769.||PDF


Paper 2014

019、Chu L, Li M, Cui P, et al. The Study of NiO/TiO2 Photocatalytic Activity for Degradation of Methylene Orange[J]. Energy and Environment Focus, 2014, 3(4): 371-374.||PDF

018、Zhang Z, Zhao X, Wang T, et al. Research Progress of Solar Cells Based on Organic–Inorganic Hybrid Perovskites Methylamine Lead Halide[J]. Energy and Environment Focus, 2014, 3(4): 354-359.||PDF

017、Dai H, Ding R, Li M, et al. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface[J]. Scientific Reports, 2014, 4.||PDF

016、Jiang B, Li M, Li Y, et al. Vertical deposition of ultrafine silver particles on silicon surface out of solutions by silver mirror process[J]. Materials Letters, 2014, 116: 195-198.||PDF

015、Tian J, Leng Y, Zhao Z, et al. Carbon quantum dots/hydrogenated TiO 2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Nano Energy, 2015, 11: 419-427.||PDF

014、Song D, Li M, Wang T, et al. Dye-sensitized solar cells using nanomaterial/PEDOT–PSS composite counter electrodes: effect of the electronic and structural properties of nanomaterials[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293: 26-31.||PDF

013、Duan Z, Li M, Mwenya T, et al. Geometric parameter optimization to minimize the light‐reflection losses of regular vertical silicon nanorod arrays used for solar cells[J]. Physica Status Solidi (a), 2014, 211(11): 2527-2531.||PDF

012、Chu L, Li M, Wan Z, et al. Morphology control and fabrication of multi-shelled NiO spheres by tuning the pH value via a hydrothermal process[J]. CrystEngComm, 2014, 16(48): 11096-11101.

011、Song D, Li M, Li Y, et al. Highly transparent and efficient counter electrode using SiO2/PEDOT–PSS composite for bifacial dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7126-7132.||PDF

010、Bai F, Li M, Huang R, et al. A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications[J]. RSC Advances, 2014, 4(4): 1794-1798.||PDF

009、Li X, Li M, Cui P, et al. Electrodeposition of Ag nanosheet-assembled microsphere@ Ag dendrite core–shell hierarchical architectures and their application in SERS[J]. CrystEngComm, 2014, 16(19): 3834-3838.||PDF

008、Zhao X, Li M, Song D, et al. A novel hierarchical Pt-and FTO-free counter electrode for dye-sensitized solar cell[J]. Nanoscale Research Letters, 2014, 9(1): 1-5.||PDF

007、Jiang B, Li M, Song D, et al. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer[J]. Journal of Nanomaterials, 2014, 2014.||PDF

006、Song D, Li M, Jiang Y, et al. Facile fabrication of MoS 2/PEDOT–PSS composites as low-cost and efficient counter electrodes for dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279: 47-51.||PDF

005、Jiang Y, Li M, Song D, et al. A novel 3D structure composed of strings of hierarchical TiO 2 spheres formed on TiO 2 nanobelts with high photocatalytic properties[J]. Journal of Solid State Chemistry, 2014, 211: 90-94.||PDF

004、Li Y, Li M, Wang T, et al. DFT study on the atomic-scale nucleation path of graphene growth on the Cu (111) surface[J]. Physical Chemistry Chemical Physics, 2014, 16(11): 5213-5220.||PDF

003、Bai F, Li M, Huang R, et al. A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications[J]. RSC Advances, 2014, 4(4): 1794-1798.||PDF

002、Jiang B, Bai Y, Li M, et al. In situ observation of correlations between domain switching and crack propagation in BaTiO 3 single crystals under coupling of mechanical and electric loads[J]. Scripta Materialia, 2014, 70: 47-50.||PDF

001、Ding R, Dai H, Li M, et al. The application of localized surface plasmons resonance in Ag nanoparticles assisted Si chemical etching[J]. Applied Physics Letters, 2014, 104(1): 011602.||PDF


Paper 2013

011、Jiang B, Li M, Song D, et al. A facile direct deposition of silver nanoparticles on silicon surface by silver mirror process[J]. Crystal Research and Technology, 2013, 48(12): 1044-1049.||PDF

010、Li Y, Li M, Gu T S, et al. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface[J]. Applied Surface Science, 2013, 284: 207-213.||PDF

009、Li M, Yu H, Huang R, et al. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis[J]. Nanoscale Research Letters, 2013, 8(1): 1-6.||PDF

008、Bai F, Li M, Huang R, et al. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment[J]. Journal of Nanoparticle Research, 2013, 15(9): 1-7.||PDF

007、Song D, Li M, Bai F A N, et al. Silicon Nanoparticles/Pedot–Pss Nanocomposite as an Efficient Counter Electrode for Dye-Sensitized Solar Cells[J]. Functional Materials Letters, 2013, 6(04): 1350048.||PDF

006、Li Y, Li M, Gu T S, et al. The over-step coalescence of carbon atoms on copper surface in the CVD growth of graphene: density functional calculations[J]. AIP Advances, 2013, 3(5): 052130.||PDF

005、Bai F, Li M, Song D, et al. Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer[J]. Applied Surface Science, 2013, 273: 107-110.||PDF

004、Jiang B, Liu Y, Li M. In-situ observation of crack growth and domain switching around vickers indentation on BaTiO3 single crystal under sustained electric field[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 772-776.||PDF

003、Li M, Jiang Y, Ding R, et al. Hydrothermal synthesis of anatase TiO2 nanoflowers on a nanobelt framework for photocatalytic applications[J]. Journal of Electronic Materials, 2013, 42(6): 1290-1296.||PDF

002、Jiang Y, Li M, Ding R, et al. Enhanced the performance of dye-sensitized solar cells with a novel photoanode using TiO 2 nanoflower clusters and nanoparticles[J]. Materials Letters, 2013, 107: 210-213.||PDF

001、Jiang B, Li M, Bai F, et al. Morphology-controlled synthesis of silver nanoparticles on the silicon substrate by a facile silver mirror reaction[J]. AIP Advances, 2013, 3(3): 032119.||PDF


Paper 2012

004、Bai F, Li M, Song D, et al. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO 3/H 2 O 2 solution at room temperature[J]. Journal of Solid State Chemistry, 2012, 196: 596-600.||PDF

003、Bai F, Li M, Huang R, et al. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching[J]. Nanoscale Research Letters, 2012, 7(1): 1-5.||PDF

002、Dai H, Li M, Li Y, et al. Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface[J]. Optics Express, 2012, 20(104): A502-A509.||PDF

001、Geng X, Qi Z, Li M, et al. Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts[J]. Solar Energy Materials and Solar Cells, 2012, 103: 98-107.||PDF



Representative Patents

Invention Patents

29. 应力致偏保偏光纤应力双折射值的测量方法。专利号:ZL 2004 1 0043789.5。

28. GaAs基InSb薄膜异质外延生长的模拟方法。专利号:ZL 200610010315.X。

27. Si基生长混合同素异型结构VO2薄膜的工艺。专利号:ZL 2006 1 0151058.1。

26. 脉冲激光沉积Si基VO2薄膜取向生长的方法。专利号:ZL 2006 1 0151072.1。

25. 不同应力区结构保偏光纤的拍长测算方法。专利号:ZL 200610151069.X。

24. GaAs基InSb薄膜的分子束外延生长方法。专利号:ZL 200610010308.X。

23. 光导型双色紫外红外探测器及其制备方法。专利号:ZL 200910072199.8 。

22. 量子阱红外探测器材料结构的模拟设计方法。专利号:ZL 200910072263.2。

21. 一种GaAs基InAs1xSbx多量子阱薄膜的分子束外延生长方法。专利号:200910073499.8。

20. 具有疏水性的硅表面陷光结构制备方法。专利号:ZL201010551140.X。

19. 一种基于金属纳米粒子催化的硅片减薄方法。专利号:ZL201110251150.6。

18. 用于太阳电池的多孔金字塔型硅表面陷光结构制备方法。专利号:ZL201110252280.1。

17. 利用银镜反应制备硅表面陷光结构的方法。专利号:ZL201110260398.9。

16. 一种硅表面纳米多孔减反射结构的制备方法。专利号:ZL201110261035.7。

15. 一种制备TiO2纳米花带的方法。专利号:ZL201210180449.1。

14. 一种花状微米结构氯化银颗粒的制备方法。专利号: ZL201210169981.3。

13. 树叶状氯化银微米结构的制备方法。专利号:ZL201210169982.8。

12. 一种粒径均匀的碳微米球材料的制备方法。专利号:ZL201210300689.0。

11. 一种低成本的碳纳米管阵列的制备方法。专利号:ZL201310008135.8。

10. 一种基于LSP效应陷光增效新型减反射结构的制备方法。专利号:ZL201310009297.3。

09. 一种利用银镜反应制备硅表面形貌可控纳米银粒子的方法。专利号:ZL201310064543.5。

08. 一种硅纳米线双层阵列结构材料的制备方法。专利号:ZL201210276363.9。

07. 一种表面修饰的由纳米片层组装的微米银球及其制备方法。专利号:ZL201310009307.3。

06. 一种ZnO纳米柱和ZnO纳米片层复合结构材料的制备方法。专利号:ZL201310008117.X。

05. 一种二氧化钛纳米多孔膜材料的制备方法。专利号:ZL201310008110.8。

04. 一种串状TiO2微米球材料及其制备方法。专利号:ZL201310253775.5。

03. 一种具有减反射特性的亚波长硅纳米线阵列的制备方法。专利号:ZL201310007946.6。

02. 一种基于LSP效应制备“弹坑状”多孔硅结构的方法。专利号:ZL201310182159.5。

01. 一种松塔状二氧化钛纳米材料的制备方法。专利号:ZL 201410108304.X。

Utility Model Patents

07. 光纤照明与LED灯互补照明系统。专利号:ZL201120552643.9。

06. 一种防盗防堵的下水道井盖。专利号:ZL201120587582.4。

05. 抽拉式太阳能新型手电筒。专利号:ZL 201220462755.X。

04. 一种光触媒车内挂饰。专利号:ZL 201220612560.9。

03. 一种用于立交桥下路面积水的微能源自供电无线预警系统。专利号:ZL 201220623883.8。

02. 一种照明控制系统及照明系统。申请号:201420773766.9。

01. 取暖装置。专利号:ZL 201520195045.9。

TOP